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The (very recent) prehistory

In the end of 1990’s N. J. Young and his collaborators (among
others J. Agler, D. Ogle, J. A. Ball, F. B. Yeh) inspired by
problems from µ-synthesis started to investigate the symmetrized
bidisc (and then its higher dimensional counterpart symmetrized
polydisc).

The domain turned out to have many interesting
properties from the point of view of Geometric Function Theory.
The domain is closely related to the spectral ball - some of the
properties of the spectral ball follow from an appropriate
application of properties of the symmetrized polydisc. Moreover,
the symmetrized polydisc seems to be very well-suited to the study
of function geometric properties of much more general
domains.Quite recently a kind of generalizations of the
symmetrized polydisc (i. e. symmetric powers) became a subject
of the investigation from the point of view of the geometric
function theory.
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History - continued

Around 2007 another domain having its origin in µ-synthesis
(called tetrablock) started to be investigated (by N. J. Young &
Co.: A. A. Abouhajar, M. C. White). And astonishingly it shared
many properties of the symmetrized bidisc although there is no
clear reason why it happens so.

The mystery which lies behind the
domains, behind the connections between them and the interesting
phenomena which both examples share make the investigation of
the domain exciting.
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The symmetrized polydisc - definition

Let πn : Cn 7→ Cn be the symmetrization mapping given by the
formula

πnk(λ) :=
∑

1≤j1<...<jk≤n

λj1 · . . . · λjk , λ = (λ1, . . . , λn) ∈ Cn. (1)

Define the symmetrized polydisc Gn := π(Dn).
Gn is the set of n-tuples (s1, . . . , sn) = πn(λ1, . . . , λn) ∈ Cn such
that the polynomial

ζn− s1ζ
n−1 + s2ζ

n−2 + . . .+ (−1)nsn = (ζ−λ1) · . . . · (ζ−λn) (2)

has all its roots (λj ’s) in D.
Since the time of introducing the symmetrized polydisc turned out
to be important in the geometric function theory. Let us recall the
properties which make it important in this theory.
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Important properties of Gn

πn : Dn 7→ Gn is a proper holomorphic mapping with multiplicity
n!.

The symmetrized polydisc is a hyperconvex domain which is
not convex for n ≥ 2 (consider the points πn(t, t, 0, . . . , 0) and
πn(it, it, 0, . . . , 0), 1/

√
2 ≤ t < 1).

Theorem

(Costara, Agler-Young, 2004)

G2 is not biholomorphic to a convex domain,

lG2 ≡ cG2 .
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Holomorphic selfmappings of Gn

For a function f ∈ O(D,D) one may define the mapping
Ff (πn(λ)) := πn(f (λ1), . . . , f (λn)), λ ∈ Dn. Note that
Ff ∈ O(Gn,Gn).

In 2005 the form of proper holomorphic self-mappings of Gn has
been found.Namely, Prop(Gn,Gn) equals

{FB : B is a finite Blaschke product}. (3)

In particular, we have a description of the group of automorphisms
of Gn:

Aut(Gn) = {Fa : a ∈ AutD}. (4)
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Symmetrized polydisc - more properties, continued

The symmetrized polydisc is an important object when studying
the properties of the spectral unit ball

Ωn := {A ∈ Cn×n : r(A) < 1}, (5)

where r(A) = max{|ζ| : ζ ∈ SpecA} is the spectral radius of the
matrix A.

This follows from the fact that the charateristic
polynomial of the matrix A:

det(λIn − A) = λn +
n∑

j=1

(−1)jσj(A)λn−j , (6)

gives the natural holomorphic mapping σ : Ωn 7→ Gn.The study of
Gn helps understand the form of Aut Ωn (also Prop(Ωn,Ωn)) and
the (regularity of the) spectral Nevanlinna-Pick problem.
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Automorphisms of the spectral ball

In 1991 a problem whether Aut Ωn is generated by three types of
automorhisms (transpositions, conjugations and Möbius maps) was
stated by T. Ransford and M. White.

Later the problem was
studied by L. Baribeau, J. Rostand and P. J. Thomas. A negative
answer was found by  L. Kosiński in 2012. Final description of
Aut Ωn is however still unkown.
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Symmetrized polydisc: higher dimension vs. n ≤ 2

It was the discovery (in 2005) that the Lempert theorem holds for
the symmetrized bidisc that made the domain G2 (and thus Gn in
general) interesting for geometric function theory.

Since that time
much became known about the differences of the properties of Gn

in case n ≤ 2 and in case n > 2. The results presented below are
due to J. Agler, C. Costara, A. Edigarian, M. Jarnicki, N. Nikolov,
P. Pflug, N. J. Young, W. Zwonek. We present them below.
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Theorem

The following properties are equivalent:

n ≤ 2

lGn ≡ cGn

κGn ≡ γGn

Gn is C-convex

lGn satisfies the triangle inequality

Gn is a Lu-Qi Keng domain.
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Symmetrized bidisc - very regular domain

It follows from the above description together with the Lempert
Theorem that Gn , n ≥ 3 cannot be exhausted by domains
biholomorphic to convex ones. It turned out however that the
same holds for n = 2.

The symmetrized bidisc may be defined analytically

G2 = {(s, p) ∈ C2 : |s − s̄p|+ |p|2 < 1}. (7)

The above description leads to the proof of the fact that G2 may
be exhausted by strictly linearly convex domains:
Dε := {(s, p) ∈ C2 :

√
|s − s̄p|+ ε+ |p|2 < 1}.This gives another

proof of the equality lG2 = cG2 (via the Lempert theorem for
strictly linearly convex domains) and makes the question on the
equality lD = cD for all C-convex domains very interesting.The
domains Dε turned out to be the first examples of strictly linearly
convex domains that cannot be exhausted by domains
biholomorphic to convex ones.
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Tetrablock - definition

Tetrablock introduced in 2007 (by A. A. Abouhajar, M. C. White
and N. J. Young) may be decribed in many different ways.

Theorem

(Abouhajar, White, Young, 2007) Let x ∈ C3. Then the
following are equivalent.

|x1 − x̄2x3|+ |x3 − x1x2|+ |x2|2 < 1

|x1 − x̄2x3|+ |x2 − x̄1x3|+ |x3|2 < 1

x ∈ D3 and ωx3−x2
ωx1−1 ∈ D for ω ∈ D̄

there is a (symmetric) matrix A ∈ C2×2 with ||A|| < 1 such
that x = (a11, a22, detA).

1− x1w − x2z + x3wz 6= 0 for any w , z ∈ D̄.

There are many more possible descriptions of E.
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Tetrablock - properties

Note that similarly as in the case of the polydisc the tetrablock is a
proper (of multiplicity two) holomorphic image of a very regular
domain (convex and homogeneouous), i. e. the Cartan domain of
type two:

π : ΩII 3 A→ (a11, a22, detA) ∈ E.

(8)

It follows directly from the definition that the tetrablock is a
bounded hyperconvex but not a convex domain. In recent years
more (much more difficult) properties of E were found.
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Tetrablock - properties, continued

First a complete decsription of AutE was given (N. J. Young).

E
turned out to be non-homogeneuous. The orbit of 0 is the set
{x ∈ E : x1x2 = x3}.
Moreover, all proper holomorphic self-mappings are automorphisms
( L. Kosiński).Finally, we have.

Theorem

(Edigarian-Kosiński-Z, 2011)

lE = cE

E cannot be exhausted by domains biholomorphic to convex
ones.
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( L. Kosiński).Finally, we have.

Theorem

(Edigarian-Kosiński-Z, 2011)
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Tetrablock vs. symmetrized bidisc

It turned out that the uniqueness of l-extremals (equivalently
complex geodesics or put in another way the uniqueness problem in
the Schwarz Lemma for the given domain) is the property that
differs the symmetrized bidisc from the tetrablock.

There is a nice (and from the first view unexpected) relation
between the tetrablok and the symmetrized bidisc.
For a point x ∈ C3 the following are equivalent:

x ∈ E
for any ω ∈ ∂D we have that (x1 + ωx2, ωx3) ∈ G2.

Recall that similarly to the study of the symmetrized polydisc the
tetrablock allows the existence of rational functions defining the
domain to some extent. Namely, for any ω ∈ D̄ the function
x → ωx3−x2

ωx1−1 maps E to D.Note however that the family of these
functions (unlike in the case of the symmetrized bidisc) is not a
family which defines the Carathéodory distance.
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Tetrablock vs. symmetrized bidisc

It turned out that the uniqueness of l-extremals (equivalently
complex geodesics or put in another way the uniqueness problem in
the Schwarz Lemma for the given domain) is the property that
differs the symmetrized bidisc from the tetrablock.
There is a nice (and from the first view unexpected) relation
between the tetrablok and the symmetrized bidisc.
For a point x ∈ C3 the following are equivalent:

x ∈ E
for any ω ∈ ∂D we have that (x1 + ωx2, ωx3) ∈ G2.

Recall that similarly to the study of the symmetrized polydisc the
tetrablock allows the existence of rational functions defining the
domain to some extent.

Namely, for any ω ∈ D̄ the function
x → ωx3−x2

ωx1−1 maps E to D.Note however that the family of these
functions (unlike in the case of the symmetrized bidisc) is not a
family which defines the Carathéodory distance.
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Tetrablock vs. symmetrized bidisc

It turned out that the uniqueness of l-extremals (equivalently
complex geodesics or put in another way the uniqueness problem in
the Schwarz Lemma for the given domain) is the property that
differs the symmetrized bidisc from the tetrablock.
There is a nice (and from the first view unexpected) relation
between the tetrablok and the symmetrized bidisc.
For a point x ∈ C3 the following are equivalent:

x ∈ E
for any ω ∈ ∂D we have that (x1 + ωx2, ωx3) ∈ G2.

Recall that similarly to the study of the symmetrized polydisc the
tetrablock allows the existence of rational functions defining the
domain to some extent. Namely, for any ω ∈ D̄ the function
x → ωx3−x2

ωx1−1 maps E to D.Note however that the family of these
functions (unlike in the case of the symmetrized bidisc) is not a
family which defines the Carathéodory distance.
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Tetrablock - more properties and problems

It is also known that E is C-convex.

It is however still unknown
whether E may be exhausted by strictly linearly convex domains.
The last problem is a part of a general problem whether all
C-convex domains may be exhausted by smooth C-convex
domains, which would imply the Lempert theorem for C-convex
domains, too.
Very recently an intensive work has been initiated on the study of
the operator theory on the symmetrized bidisc and tetrablock (J.
Sarkar, T. Bhattacharyya).
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Symmetric power of complex manifolds

Very recently a further generalization of the symmetrized polydisc
has been studied.

At first note that one may consider
Sn(D) := πn(Dn) for a domain D ⊂ C.
But the idea could be applied in a more abstract way and may lead
to the following situation.
Let X be a complex manifold of dimension m. We define the
equivalence relation x ∼ y , x , y ∈ X n if there is a permutation σ
of {1, . . . , n} such that y = σ(x). We define X n

sym := X n/ ∼.
Then X n

sym has a structure of a complex analytic space. In
dimension m = 1 it has a structure of the complex manifold. In the
case X = D is a domain in C it has a realization as Sn(D) - a
domain in Cn.
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Symmetric power of Euclidean balls

Recently, elements of geometric function theory were developed in
these objects.

In particular, Alexandrov type result was proven.

Theorem (Chakrabarti, Grow)

Let f : (Bm)nsym → (Bm)nsym, m, n ≥ 2, be a proper holomorphic
mapping. Then there is an automorphism g of Bm such that
f = Fg .

Can one say a little more about the geometry (function theory) on
(Bm)nsym?
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Symmetric power of planar domains

While considering geometric function properties of symmetric
powers of planar domains one has to be careful as the following
example shows.

Let D := C \ {0, 1}. Then D is Kobayashi complete while D2
sym is

affinely equivalent to (C \ {0})2 for which the Kobayashi
pseudodistance vanishes.
However, we have the following result.

Theorem

Let D be a domain in C. Then Dn
sym is Kobayashi hyberbolic (and

Kobayashi complete) iff #(C \ D) ≥ 2n.

We also know that Sn(D) is always linearly convex.
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Symmetric power of planar domains - continued

There are some nice properties that are inherited under taking the
symmetric powers.

Theorem

Let D be a domain in C, n ≥ 2. Then the following equivalencies
hold.
Sn(D) is hyperconvex iff D is hyperconvex.
Sn(D) is Carathéodory hyperbolic iff D is Carathéodory hyperbolic.
Sn(D) is c-finitely compact iff D is c-finitely compact.
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Sn(D) is Carathéodory hyperbolic iff D is Carathéodory hyperbolic.
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Possibe further study

One could try to study the properties of symmetric functions
(actually the functions on X n

sym).

That would be responsible for
calculating the Carathéodory pseudodistance on X n

sym. That could
also lead to the study of (symmetric) Nevanlinna-Pick problem.
Recall that such a study was already applied in the case of finding
the extremals in the symmetrized bidisc.
Another possible generalization would be the study of
(holomorphic) functions invariant with respect to some proper
holomorphic maps (or some groups of linear isomorphisms) –
compare recent results of Aron, Falco, Garcia, Maestre.
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calculating the Carathéodory pseudodistance on X n

sym.

That could
also lead to the study of (symmetric) Nevanlinna-Pick problem.
Recall that such a study was already applied in the case of finding
the extremals in the symmetrized bidisc.
Another possible generalization would be the study of
(holomorphic) functions invariant with respect to some proper
holomorphic maps (or some groups of linear isomorphisms) –
compare recent results of Aron, Falco, Garcia, Maestre.



Possibe further study

One could try to study the properties of symmetric functions
(actually the functions on X n

sym). That would be responsible for
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