K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Isometric weighted composition operators on weighted Bergman spaces

Nina Zorboska

University of Manitoba

May, 2018

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Table of contents

2 [Characterization of isometric WCO on](#page-7-0) $L^2_a(dm_{\alpha})$

• [Some special cases](#page-11-0)

KORKAR KERKER EL VOLO

Introduction

For $u, \phi \in H(\mathbb{D})$ and $\phi : \mathbb{D} \to \mathbb{D}$ non-constant, define a

Weighted Composition Operator (WCO) $W_{u,\phi}: H(\mathbb{D}) \to H(\mathbb{D})$ by

$$
W_{u,\phi}f=u(f\circ\phi)
$$

deLeeuw, Rudin, Wermer (1960), Forelli (1964), Kolaski (1981):

Surjective isometries on the Hardy spaces H^p and Bergman spaces L^p_a when $p \neq 2$ are WCO.

(ϕ is an automorphism, and u is expressed via ϕ)

When $p = 2$ there are many other isometries (unitaries).

Weighted Bergman spaces $L^2_a(d m_\alpha)$ on $\mathbb D$: $\alpha>-1$, dm $_{\alpha}(z)=(\alpha+1)(1-|z|^2)^{\alpha}$ dm (z) , $L^2_a(dm_\alpha)=\{f\in \mathcal{H}(\mathbb{D});||f||^2_\alpha=$ $\int_{\mathbb{D}} |f(z)|^2 dm_{\alpha}(z) < \infty\}$

 $\alpha=0$ is the classical Bergman space $L^2_a(dm).$

 $L^2_a(d m_\alpha)$ are Reproducing Kernel Hilbert spaces:

$$
K^{\alpha}(w, z) = \frac{1}{(1-\overline{z}w)^{2+\alpha}} = K_z^{\alpha}(w), \ \ \langle f, K_z^{\alpha} \rangle = f(z)
$$

Normalized point evaluation functions at $z \in \mathbb{D}$:

$$
k_{z}^{\alpha}(w)=\tfrac{(1-|z|^{2})^{1+\frac{\alpha}{2}}}{(1-\overline{z}w)^{2+\alpha}}
$$

KORKAR KERKER EL VOLO

Few facts about WCO $W_{u,\phi}$ on $L^2_a(dm_{\alpha})$:

- Bounded, compact WCO determined by Čučković, Zhao (2004)
- If $u \in H^{\infty}(\mathbb{D})$, then $W_{u,\phi} = M_u C_{\phi}$ is bounded.
- Necessary condition for boundedness: $u \in L^2_a(dm_\alpha)$.

•
$$
W_{u,\phi}^* K_z^{\alpha} = \overline{u(z)} K_{\phi(z)}^{\alpha}
$$

• Unitary WCO determined by Le (2012):

 $W_{u,\phi}$ is unitary on $L^2_a(d m_\alpha)$ iff ϕ is a disk automorphism and $u = c_1(\phi')^{1+\alpha/2} = c_2 \frac{1}{k^{\alpha} \omega}$ $\frac{1}{k^\alpha_{\phi(0)} \circ \phi}, \,\, |c_1|=|c_2|=1.$

Question: When is $W_{u,\phi}$ an isometry on $L^2_a(dm_{\alpha})$?

- \bullet C_{ϕ} is an isometry on $L^2_{a}(dm_{\alpha})$ iff ϕ is a rotation.
- M_u is an isometry $L^2_a(dm_\alpha)$ iff u is an unimodular constant.

Example

If ϕ is a finite Blaschke product of degree *n* and $u(z) = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{n}\phi'(z)$, then $W_{u,\phi}$ is an isometry on $L^2_a(dm).$

• isometric WCO on H^2 determined by Matache (2014):

 $W_{u,\phi}$ is an isometry on H^2 iff ϕ is an inner function and $u \in H^2$ is such that

$$
\int_{\phi^{-1}(E)} |u(\xi)|^2 d\sigma(\xi) = \int_{\phi^{-1}(E)} \frac{1}{(P_{\phi(0)} \circ \phi)(\xi)} d\sigma(\xi),
$$

for all $E \subset \partial \mathbb{D}$ measurable; with σ normalized Lebesgue measure on $\partial \mathbb{D}$; $P_{\phi(0)}$ Poisson kernel function at $\phi(0)$.

(Follows Forelli's characterization of isometric WCO on H^p , $p \neq 2$.)

Characterization of isometric WCO on L^2_{σ} $\frac{2}{a}(dm_{\alpha})$

For α , μ , ϕ as before and $E \subset \mathbb{D}$ Borel measurable, the *u*-weighted, φ pull-back measure of $dm_α$ is defined by

$$
\mu_{u,\phi}^{\alpha}(E) = \mu_u^{\alpha}(\phi^{-1}(E)) = \int_{\phi^{-1}(E)} |u(z)|^2 dm_{\alpha}(z)
$$

 $\mathcal{h}^{\alpha}_{\mu,\phi}(z)=\frac{d\mu^{\alpha}_{\mu,\phi}}{dm_{\alpha}}(z) \quad \text{(Radon-Nikodym derivative)}$

Recall: for $h \in L^1(dm_\alpha)$ the Toeplitz operator \mathcal{T}_h on $L^2_g(dm_\alpha)$ is $T_h f(z) = \int_{\mathbb{D}} h(w) f(w) \frac{1}{(1-z_W)^2}$ $\frac{1}{(1-z\overline{w})^{2+\alpha}}$ dm $_{\alpha}(w)$

Proposition 1.

Let $\alpha > -1$, $u, \phi \in \mathcal{H}(\mathbb{D})$ with $\phi : \mathbb{D} \to \mathbb{D}$ non-constant, such that $W_{u,\phi}: L^2_a(dm_{\alpha})\to L^2_a(dm_{\alpha})$ is bounded. Then $W^*_{u,\phi}W_{u,\phi}=T_{h^\alpha_{u,\phi}}.$

Recall (Proposition 1.)
$$
W_{u,\phi}^* W_{u,\phi} = T_{h_{u,\phi}^{\alpha}}.
$$

Proof.

(i) Since $h_{u,\phi}^{\alpha}$ is a non-negative function, $\mathcal{T}_{h_{u,\phi}^{\alpha}}$ is a positive operator. Thus, we need to show that $\forall f \in L^2_a(d m_\alpha)$, we have $< W_{u,\phi}^*W_{u,\phi}f,f>=< T_{h^\alpha_{u,\phi}}f,f>$. This holds since

$$
||W_{u,\phi}f||_{\alpha}^{2} = \int_{\mathbb{D}} |u(z)|^{2} |f(\phi(z))|^{2} dm_{\alpha}(z)
$$

$$
= \int_{\mathbb{D}} |f(w)|^{2} d\mu_{u,\phi}^{\alpha}(w)
$$

$$
= \int_{\mathbb{D}} |f(w)|^{2} h_{u,\phi}^{\alpha}(w) dm_{\alpha}(w)
$$

$$
= \langle T_{h_{u,\phi}^{\alpha}}f, f \rangle.
$$

イロト イ伊 トイヨ トイヨト Ω ∍

The Berezin transform of T_h on $L^2_a(dm_\alpha)$:

 $\widetilde{\mathcal{T}}_h(z) = \widetilde{h}(z) = \langle T_h k_z^{\alpha}, k_z^{\alpha} \rangle = \int_{\mathbb{D}} h(w) \frac{(1-|z|^2)^{2+\alpha}}{|1-z\overline{w}|^{4+2\alpha}}$ $\frac{(1-|Z|)}{|1-z\overline{w}|^{4+2\alpha}}dm_{\alpha}(w).$

Theorem 1.

Let $\alpha > -1$, $u, \phi \in H(\mathbb{D})$ with ϕ a nonconstant self-map of $\mathbb D$ such that $\mathcal{W}_{u,\phi}:\mathcal{L}^2_a(d m_{\alpha})\to \mathcal{L}^2_a(d m_{\alpha})$ is bounded. Then: (i) $W_{u,\phi}$ is an isometry iff $h_{u,\phi}^{\alpha}=1$ almost everywhere on $\mathbb{D}.$ (ii) If $W_{\mu,\phi}$ is an isometry, then $m(\mathbb{D} \setminus \phi(\mathbb{D})) = 0$. (iii) $W_{u,\phi}$ is an isometry iff for all $z \in \mathbb{D}$, $\widetilde{h^\alpha_{u,\phi}}(z)=\int_{\mathbb{D}}|u(w)|^2\frac{(1-|z|^2)^{2+\alpha}}{|1-z\overline{\phi(w)}|^{4+2}}$ $\frac{(1-|Z|^{-})^{1+\alpha}}{|1-z\overline{\phi(w)}|^{4+2\alpha}}dm_{\alpha}(w)=1.$ (iv) $W_{u,\phi}$ is an isometry iff $||W_{u,\phi}k_z^{\alpha}||_{\alpha} = 1$ for every z in $\mathbb D$.

The boundedness and compactness criteria for WCO on $L^2_a(d m_\alpha)$ given by Čučković, Zhao (2004) uses the integral from Theorem 1, part (iii), which they called "weighted ϕ -Berezin transform of $|u|^{2n}$.

Also, Gallardo-Gutiérrez, Kumar, Partington (2010) showed that this leads to: $sup_{z\in\mathbb{D}}||W_{u,\phi}k_{z}^{\alpha}||_{\alpha}<\infty \Leftrightarrow W_{u,\phi}$ is bounded on $L^{2}_{a}(dm_{\alpha})$, and $\lim_{|z|\to 1}||W_{u,\phi}k_{z}^{\alpha}||_{\alpha}\to 0 \Leftrightarrow W_{u,\phi}$ is compact on ${\it L}_{{\it a}}^{2}(dm_{\alpha}).$

KORK ERKER ADE YOUR

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Question: Is there a more explicit description of the Radon-Nikodym derivative $h^{\alpha}_{\mu,\phi}(z) = \frac{d\mu^{\alpha}_{\mu,\phi}}{dm_{\alpha}}(z)?$

Proposition 2.

Let $\alpha > -1$, $u, \phi \in \mathcal{H}(\mathbb{D})$ with $\phi : \mathbb{D} \to \mathbb{D}$ non-constant. If ϕ is of multiplicity bounded by N, then the Radon-Nikodym derivative of $\mu_{u,\phi}^\alpha$ with respect to m_α is given by $h_{u,\phi}^\alpha(z)=0$, if $z\notin\phi(\mathbb{D})$, and otherwise

$$
h_{u,\phi}^{\alpha}(z)=\sum_{n=1}^{N_z}\frac{|u(z_n)|^2(1-|z_n|^2)^{\alpha}}{|\phi'(z_n)|^2(1-|\phi(z_n)|^2)^{\alpha}},
$$

where for each n, $\phi(z_n) = z$ and $\phi'(z_n) \neq 0$, and $N_z \leq N$.

KOD KAR KED KED E YORA

Proposition 3.

Let $\alpha > -1$, $u, \phi \in H(\mathbb{D})$ with $\phi : \mathbb{D} \to \mathbb{D}$. If ϕ is univalent and $W_{u,\phi}$ is an isometry on $L^2_a(dm_{\alpha})$, then $m(\mathbb{D}\setminus \phi(\mathbb{D}))=0$, i.e. ϕ is a full map, and

$$
u(z)=c\phi'(z)\frac{(1-\overline{\phi(0)}\phi(z))^{\alpha}}{(1-|\phi(0)|^2)^{\alpha/2}},\ |c|=1.
$$

Note that when $\alpha = 0$ above, then $u = c\phi', |c| = 1$.

Example

Let ϕ be the Riemann map from $\mathbb D$ onto $\mathbb D \setminus [0,1)$, and let $u = \phi'$. Then $W_{u,\phi}$ is a non-unitary isometry on $L^2_a(dm)$.

Theorem 2.

(i) If ϕ is a disk automorphism and $W_{u,\phi}$ is an isometry on ${\mathcal L}^2_{\mathsf a}(dm_\alpha)$, then $u=c(\phi')^{1+\alpha/2},\,\,|c|=1$, and so $W_{u,\phi}$ is unitary.

(ii) If $\alpha = 0$ and ϕ is a univalent full map, then $W_{\mu,\phi}$ is an isometry on L^2 _a (dm) iff $u = c\phi', |c| = 1$.

(iii) If $\alpha \neq 0$, ϕ is univalent, $\phi(0) = 0$ and $W_{\mu,\phi}$ is an isometry on $L^2_a(dm_{\alpha})$, then ϕ is a rotation.

(iv) If $\alpha \neq 0$ and ϕ is univalent, then $W_{\mu,\phi}$ is an isometry on $L^2_a(d m_\alpha)$ iff $W_{u,\phi}$ is unitary.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

"Geometric aspects" of the isometry criteria

Question(s): If $W_{u,\phi}$ is bounded on $L^2_a(dm_{\alpha})$ and $\{z_n\}$ is such that $\phi(z_n)=z$ with $\phi'(z_n)\neq 0$, must

$$
\sum_{n=1}^{\infty} \frac{|u(z_n)|^2 (1-|z_n|^2)^{\alpha}}{|\phi'(z_n)|^2 (1-|\phi(z_n)|^2)^{\alpha}} < \infty?
$$

What is the "geometric meaning" of this condition?

If ϕ is of unbounded multiplicity and the series above converges for every $z\in \phi(\mathbb{D})$, then the series does represent $h^{\alpha}_{u,\phi}(z).$

Note:

$$
h_{u,\phi}^{\alpha}(z)=\sum_{n=1}^{\infty}\frac{|u(z_n)|^2}{|\phi'(z_n)|^{2+\alpha}}(\tau_{\phi}(z_n))^{\alpha}=\sum_{n=1}^{\infty}\frac{||W_{u,\phi}^*k_{z_n}^{\alpha}||_{\alpha}^2}{\tau_{\phi}(z_n)^2},
$$

where $\tau_{\phi}(z)$ is the local hyperbolic distortion of ϕ at z:

$$
\tau_{\phi}(z) = \frac{|\phi'(z)|(1-|z|^2)}{1-|\phi(z)|^2}.
$$

• $\tau_{\phi}(z)$ \leq 1, $\forall z \in \mathbb{D}$ (Schwarz-Pick lemma)

- ϕ is a disk automorphism iff $\exists a \in \mathbb{D}, \tau_{\phi}(a) = 1$
- ϕ is a finite Blaschke product iff $\lim_{|z|\to 1} \tau_\phi(z) = 1$
- If ϕ has an angular derivative at $\xi \in \partial \mathbb{D}$, then $\tau_{\phi}(z) \to 1$ as $z \to \xi$ nontangentially.

KORK ERKER ADE YOUR

KORKAR KERKER EL VOLO

Hence, if ϕ is of infinite multiplicity and the series above converges, then $\frac{||W_{u,\phi}^*\kappa_{2n}^\alpha||_\alpha}{\tau_\phi(z_n)}\to 0,$ $n\to\infty,$

 $($ and so furthermore $||W_{\mu,\phi}^*k_{\bm{z}_n}^{\alpha}||_\alpha^2 = \frac{|{\mu(\bm{z}_n)}|^2(1-|{\bm{z}_n}|^2)^{2+\alpha}}{(1-|\phi({\bm{z}_n})|^2)^{2+\alpha}}$ $\frac{(2n)(1-|2n|)}{(1-|\phi(z_n)|^2)^{2+\alpha}} \to 0, n \to \infty$

Note: $||W_{u,\phi}^* k_z^\alpha||_\alpha^2 = \frac{|u(z)|^2(1-|z|^2)^{2+\alpha}}{(1-|\phi(z)|^2)^{2+\alpha}}$ $\frac{((2)|\,\,(1-|2|)\,\,\,\gamma}{(1-|\phi(z)|^2)^{2+\alpha}} \to 0, |z| \to 1$ does not even guarantee the boundedness of $W_{\mu,\phi}$.

Example

 $\alpha=$ 0, ϕ an infinite Blaschke product in \mathcal{B}^h_0 and $u=\phi'.$

Question: If $W_{u,\phi}$ is an isometry on $L^2_a(dm_\alpha)$, must ϕ be of finite multiplicity (for some α 's)?

For $\alpha > 0$, $L^2_a(d m_\alpha) = L^2_a(d A_\alpha)$ with $d A_\alpha(z) = c_\alpha(\log \frac{1}{|z|})^\alpha$. If $u=\phi'$ and $\{z_n\}$ is such that $\phi(z_n)=z\in \phi(\mathbb{D})\setminus \{\phi(0)\},$ then

$$
\frac{d\check{\mu}_{u,\phi}^{\alpha}}{dA_{\alpha}}(z) = \check{h}_{u,\phi}^{\alpha}(z) = \sum_{n=1}^{\infty} \frac{(\log 1/|z_n|)^{\alpha}}{(\log 1/|\phi(z_n)|)^{\alpha}} = \frac{N_{\phi,\alpha}(z)}{(\log 1/|z|)^{\alpha}}
$$

where $N_{\phi,\alpha}(z)$ is the α -Nevanlinna counting function for ϕ .

Recall: If $\alpha=1$ and ϕ is inner, then $\mathcal{N}_{\phi,1}(z)=\log\frac{1}{|\psi_{\phi(0)}(z)|}$, except possibly on a set of logarithmic capacity zero.

Example

Take $\alpha = 1$, ϕ inner with $\phi(0) = 0$, and $u = \phi'$. Then $\breve{\hbar}^1_{u,\phi}(z)=\frac{N_{\phi,1}(z)}{\log 1/|z|}=1$ a.e., and $W_{u,\phi}$ is an isometry on ${\it L}_a^2(dA_1).$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

KORKA SERKER ORA

References

[1] Čučković, Z., Zhao, R., Weighted composition operators on the Bergman spaces, J. London Math. Soc. (2) 70 (2004), 499 - 511.

[2] Gallardo-Gutiérrez, E. A., Kumar, R., Partington, J. R., Boundedness, compactness and Schatten-class membership of weighted composition operators, Integr. Equ. Oper. Theory 67(2010), 467-479

[3] Forelli, F., The isometries of H^p , Canad. J. Math.16 (1964), 721 - 728.

[4] Kolaski, C. J., Isometries of Bergman spaces over bounded Runge domains, Canad. J. Math. 33 (1981), 1157 - 1164.

[5] Le, T., Self-adjoint, unitary, and normal weighted composition operators in several variables, J. Math. Anal. Appl. 395 (2012), 596 - 607.

[6] Matache, V., Isometric weighted composition operators, New York J. Math. 20 (2014), 711 - 726.