Isometric weighted composition operators on weighted Bergman spaces

Nina Zorboska

University of Manitoba

May, 2018

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Table of contents

2 Characterization of isometric WCO on $L_{2}^{2}(dm_{\alpha})$

Some special cases

3 "Geometric aspects" of the isometry criteria?

Introduction

For $u, \phi \in H(\mathbb{D})$ and $\phi : \mathbb{D} \to \mathbb{D}$ non-constant, define a

Weighted Composition Operator (WCO) $W_{u,\phi}: H(\mathbb{D}) \to H(\mathbb{D})$ by

$$W_{u,\phi}f = u(f \circ \phi)$$

deLeeuw, Rudin, Wermer (1960), Forelli (1964), Kolaski (1981):

Surjective isometries on the Hardy spaces H^p and Bergman spaces L^p_a when $p \neq 2$ are WCO.

(ϕ is an automorphism, and u is expressed via ϕ)

When p = 2 there are many other isometries (unitaries).

Weighted Bergman spaces $L^2_a(dm_\alpha)$ on \mathbb{D} : $\alpha > -1$, $dm_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dm(z)$, $L^2_a(dm_\alpha) = \{f \in \mathcal{H}(\mathbb{D}); ||f||^2_\alpha = \int_{\mathbb{D}} |f(z)|^2 dm_\alpha(z) < \infty\}$

 $\alpha = 0$ is the classical Bergman space $L^2_a(dm)$.

 $L^2_a(dm_\alpha)$ are Reproducing Kernel Hilbert spaces:

$$\mathcal{K}^{\alpha}(w,z) = rac{1}{(1-\overline{z}w)^{2+lpha}} = \mathcal{K}^{\alpha}_{z}(w), \quad \langle f, \mathcal{K}^{lpha}_{z} \rangle = f(z)$$

Normalized point evaluation functions at $z \in \mathbb{D}$:

$$k_{z}^{\alpha}(w) = \frac{(1-|z|^{2})^{1+\frac{\alpha}{2}}}{(1-\overline{z}w)^{2+\alpha}}$$

Few facts about WCO $W_{u,\phi}$ on $L^2_a(dm_\alpha)$:

- Bounded, compact WCO determined by Čučković, Zhao (2004)
- If $u \in H^{\infty}(\mathbb{D})$, then $W_{u,\phi} = M_u C_{\phi}$ is bounded.
- Necessary condition for boundedness: $u \in L^2_a(dm_\alpha)$.

•
$$W_{u,\phi}^* K_z^{\alpha} = \overline{u(z)} K_{\phi(z)}^{\alpha}$$

• Unitary WCO determined by Le (2012):

 $W_{u,\phi}$ is unitary on $L^2_a(dm_{\alpha})$ iff ϕ is a disk automorphism and $u = c_1(\phi')^{1+\alpha/2} = c_2 \frac{1}{k^{\alpha}_{\phi(0)} \circ \phi}, \ |c_1| = |c_2| = 1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Question: When is $W_{u,\phi}$ an isometry on $L^2_a(dm_\alpha)$?

- C_{ϕ} is an isometry on $L^2_a(dm_{\alpha})$ iff ϕ is a rotation.
- M_u is an isometry $L^2_a(dm_\alpha)$ iff u is an unimodular constant.

Example

If ϕ is a finite Blaschke product of degree n and $u(z) = \frac{1}{\sqrt{n}}\phi'(z)$, then $W_{u,\phi}$ is an isometry on $L^2_a(dm)$.

• isometric WCO on H^2 determined by Matache (2014):

 $W_{u,\phi}$ is an isometry on H^2 iff ϕ is an inner function and $u \in H^2$ is such that

$$\int_{\phi^{-1}(E)} |u(\xi)|^2 d\sigma(\xi) = \int_{\phi^{-1}(E)} \frac{1}{(P_{\phi(0)} \circ \phi)(\xi)} d\sigma(\xi),$$

for all $E \subset \partial \mathbb{D}$ measurable; with σ normalized Lebesgue measure on $\partial \mathbb{D}$; $P_{\phi(0)}$ Poisson kernel function at $\phi(0)$.

(Follows Forelli's characterization of isometric WCO on H^p , $p \neq 2$.)

Characterization of isometric WCO on $L^2_a(dm_\alpha)$

For α, u, ϕ as before and $E \subset \mathbb{D}$ Borel measurable, the *u*-weighted, ϕ pull-back measure of dm_{α} is defined by

$$\mu_{u,\phi}^{\alpha}(E) = \mu_{u}^{\alpha}(\phi^{-1}(E)) = \int_{\phi^{-1}(E)} |u(z)|^2 dm_{\alpha}(z)$$
$$h_{u,\phi}^{\alpha}(z) = \frac{d\mu_{u,\phi}^{\alpha}}{dm_{\alpha}}(z) \quad (\text{Radon-Nikodym derivative})$$

Recall: for $h \in L^1(dm_\alpha)$ the Toeplitz operator T_h on $L^2_a(dm_\alpha)$ is $T_h f(z) = \int_{\mathbb{D}} h(w) f(w) \frac{1}{(1-z\overline{w})^{2+\alpha}} dm_\alpha(w)$

Proposition 1.

Let $\alpha > -1$, $u, \phi \in \mathcal{H}(\mathbb{D})$ with $\phi : \mathbb{D} \to \mathbb{D}$ non-constant, such that $W_{u,\phi} : L^2_a(dm_\alpha) \to L^2_a(dm_\alpha)$ is bounded. Then $W^*_{u,\phi}W_{u,\phi} = T_{h^{\alpha}_{u,\phi}}$.

Recall (Proposition 1.)
$$W^*_{u,\phi}W_{u,\phi} = T_{h^{\alpha}_{u,\phi}}$$
.

Proof.

(i) Since $h^{\alpha}_{u,\phi}$ is a non-negative function, $T_{h^{\alpha}_{u,\phi}}$ is a positive operator. Thus, we need to show that $\forall f \in L^2_a(dm_{\alpha})$, we have $\langle W^*_{u,\phi}W_{u,\phi}f, f \rangle = \langle T_{h^{\alpha}_{u,\phi}}f, f \rangle$. This holds since

$$\begin{split} |W_{u,\phi}f||_{\alpha}^{2} &= \int_{\mathbb{D}} |u(z)|^{2} |f(\phi(z))|^{2} dm_{\alpha}(z) \\ &= \int_{\mathbb{D}} |f(w)|^{2} d\mu_{u,\phi}^{\alpha}(w) \\ &= \int_{\mathbb{D}} |f(w)|^{2} h_{u,\phi}^{\alpha}(w) dm_{\alpha}(w) \\ &= < T_{h_{u,\phi}^{\alpha}}f, f > . \end{split}$$

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 - - - の Q ()・

The Berezin transform of T_h on $L^2_a(dm_\alpha)$:

 $\widetilde{T_h}(z) = \widetilde{h}(z) = \langle T_h k_z^{\alpha}, k_z^{\alpha} \rangle = \int_{\mathbb{D}} h(w) \frac{(1-|z|^2)^{2+\alpha}}{|1-z\overline{w}|^{4+2\alpha}} dm_{\alpha}(w).$

Theorem 1.

Let $\alpha > -1$, $u, \phi \in \mathcal{H}(\mathbb{D})$ with ϕ a nonconstant self-map of \mathbb{D} such that $W_{\mu,\phi}: L^2_a(dm_\alpha) \to L^2_a(dm_\alpha)$ is bounded. Then: (i) $W_{u,\phi}$ is an isometry iff $h_{u,\phi}^{\alpha} = 1$ almost everywhere on \mathbb{D} . (ii) If $W_{u,\phi}$ is an isometry, then $m(\mathbb{D} \setminus \phi(\mathbb{D})) = 0$. (iii) $W_{\mu,\phi}$ is an isometry iff for all $z \in \mathbb{D}$, $\widetilde{h^{lpha}_{u,\phi}}(z)=\int_{\mathbb{D}}|u(w)|^2rac{(1-|z|^2)^{2+lpha}}{|1-z\overline{\phi}(w)|^{4+2lpha}}dm_{lpha}(w)=1.$ (iv) $W_{u,\phi}$ is an isometry iff $||W_{u,\phi}k_z^{\alpha}||_{\alpha} = 1$ for every z in \mathbb{D} .

The boundedness and compactness criteria for WCO on $L^2_a(dm_\alpha)$ given by Čučković, Zhao (2004) uses the integral from Theorem 1, part (iii), which they called "weighted ϕ -Berezin transform of $|u|^{2"}$.

Also, Gallardo-Gutiérrez, Kumar, Partington (2010) showed that this leads to: $sup_{z\in\mathbb{D}}||W_{u,\phi}k_z^{\alpha}||_{\alpha} < \infty \Leftrightarrow W_{u,\phi}$ is bounded on $L^2_a(dm_{\alpha})$, and $\lim_{|z|\to 1} ||W_{u,\phi}k_z^{\alpha}||_{\alpha} \to 0 \Leftrightarrow W_{u,\phi}$ is compact on $L^2_a(dm_{\alpha})$. **Question:** Is there a more explicit description of the Radon-Nikodym derivative $h^{\alpha}_{u,\phi}(z) = \frac{d\mu^{\alpha}_{u,\phi}}{dm_{\alpha}}(z)$?

Proposition 2.

Let $\alpha > -1$, $u, \phi \in \mathcal{H}(\mathbb{D})$ with $\phi : \mathbb{D} \to \mathbb{D}$ non-constant. If ϕ is of multiplicity bounded by N, then the Radon-Nikodym derivative of $\mu^{\alpha}_{u,\phi}$ with respect to m_{α} is given by $h^{\alpha}_{u,\phi}(z) = 0$, if $z \notin \phi(\mathbb{D})$, and otherwise

$$h_{u,\phi}^{\alpha}(z) = \sum_{n=1}^{N_z} \frac{|u(z_n)|^2 (1-|z_n|^2)^{lpha}}{|\phi'(z_n)|^2 (1-|\phi(z_n)|^2)^{lpha}},$$

where for each n, $\phi(z_n) = z$ and $\phi'(z_n) \neq 0$, and $N_z \leq N$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Proposition 3.

Let $\alpha > -1$, $u, \phi \in \mathcal{H}(\mathbb{D})$ with $\phi : \mathbb{D} \to \mathbb{D}$. If ϕ is univalent and $W_{u,\phi}$ is an isometry on $L^2_a(dm_\alpha)$, then $m(\mathbb{D} \setminus \phi(\mathbb{D})) = 0$, i.e. ϕ is a full map, and

$$u(z) = c\phi'(z) rac{(1-\overline{\phi(0)}\phi(z))^{lpha}}{(1-|\phi(0)|^2)^{lpha/2}}, \ |c| = 1.$$

Note that when $\alpha = 0$ above, then $u = c\phi'$, |c| = 1.

Example

Let ϕ be the Riemann map from \mathbb{D} onto $\mathbb{D} \setminus [0,1)$, and let $u = \phi'$. Then $W_{u,\phi}$ is a non-unitary isometry on $L^2_a(dm)$.

Theorem 2.

(i) If ϕ is a disk automorphism and $W_{u,\phi}$ is an isometry on $L^2_a(dm_{\alpha})$, then $u = c(\phi')^{1+\alpha/2}$, |c| = 1, and so $W_{u,\phi}$ is unitary.

(ii) If $\alpha = 0$ and ϕ is a univalent full map, then $W_{u,\phi}$ is an isometry on $L^2_a(dm)$ iff $u = c\phi', |c| = 1$.

(iii) If $\alpha \neq 0$, ϕ is univalent, $\phi(0) = 0$ and $W_{u,\phi}$ is an isometry on $L^2_a(dm_\alpha)$, then ϕ is a rotation.

(iv) If $\alpha \neq 0$ and ϕ is univalent, then $W_{u,\phi}$ is an isometry on $L^2_a(dm_\alpha)$ iff $W_{u,\phi}$ is unitary.

"Geometric aspects" of the isometry criteria

Question(s): If $W_{u,\phi}$ is bounded on $L^2_a(dm_\alpha)$ and $\{z_n\}$ is such that $\phi(z_n) = z$ with $\phi'(z_n) \neq 0$, must

$$\sum_{n=1}^{\infty} \frac{|u(z_n)|^2 (1-|z_n|^2)^{\alpha}}{|\phi'(z_n)|^2 (1-|\phi(z_n)|^2)^{\alpha}} < \infty?$$

What is the "geometric meaning" of this condition?

If ϕ is of unbounded multiplicity and the series above converges for every $z \in \phi(\mathbb{D})$, then the series does represent $h^{\alpha}_{u,\phi}(z)$.

Note:

$$h_{u,\phi}^{\alpha}(z) = \sum_{n=1}^{\infty} \frac{|u(z_n)|^2}{|\phi'(z_n)|^{2+\alpha}} (\tau_{\phi}(z_n))^{\alpha} = \sum_{n=1}^{\infty} \frac{||W_{u,\phi}^* k_{z_n}^{\alpha}||_{\alpha}^2}{\tau_{\phi}(z_n)^2},$$

where $\tau_{\phi}(z)$ is the local hyperbolic distortion of ϕ at z:

$$au_{\phi}(z) = rac{|\phi'(z)|(1-|z|^2)}{1-|\phi(z)|^2}.$$

• $au_{\phi}(z) \leq 1$, $\forall z \in \mathbb{D}$ (Schwarz-Pick lemma)

- ϕ is a disk automorphism iff $\exists a \in \mathbb{D}, au_{\phi}(a) = 1$
- ϕ is a finite Blaschke product iff $\lim_{|z| \to 1} au_{\phi}(z) = 1$
- If ϕ has an angular derivative at $\xi \in \partial \mathbb{D}$, then $\tau_{\phi}(z) \to 1$ as $z \to \xi$ nontangentially.

Hence, if ϕ is of infinite multiplicity and the series above converges, then $\frac{||W_{u,\phi}^* k_{2n}^{\alpha}||_{\alpha}}{\tau_{\phi}(z_n)} \to 0, n \to \infty$,

(and so furthermore $||W_{u,\phi}^* k_{z_n}^{\alpha}||_{\alpha}^2 = \frac{|u(z_n)|^2 (1-|z_n|^2)^{2+\alpha}}{(1-|\phi(z_n)|^2)^{2+\alpha}} \to 0, n \to \infty$)

Note: $||W_{u,\phi}^*k_z^{\alpha}||_{\alpha}^2 = \frac{|u(z)|^2(1-|z|^2)^{2+\alpha}}{(1-|\phi(z)|^2)^{2+\alpha}} \to 0, |z| \to 1$ does not even guarantee the boundedness of $W_{u,\phi}$.

Example

 $\alpha = 0$, ϕ an infinite Blaschke product in \mathcal{B}_0^h and $u = \phi'$.

Question: If $W_{u,\phi}$ is an isometry on $L^2_a(dm_\alpha)$, must ϕ be of finite multiplicity (for some α 's)?

For $\alpha > 0$, $L^2_a(dm_\alpha) = L^2_a(dA_\alpha)$ with $dA_\alpha(z) = c_\alpha(\log \frac{1}{|z|})^\alpha$. If $u = \phi'$ and $\{z_n\}$ is such that $\phi(z_n) = z \in \phi(\mathbb{D}) \setminus \{\phi(0)\}$, then

$$rac{d\check{\mu}^{lpha}_{u,\phi}}{dA_{lpha}}(z)=\check{h}^{lpha}_{u,\phi}(z)=\sum_{n=1}^{\infty}rac{(\log 1/|z_n|)^{lpha}}{(\log 1/|\phi(z_n)|)^{lpha}}=rac{N_{\phi,lpha}(z)}{(\log 1/|z|)^{lpha}}$$

where $N_{\phi,\alpha}(z)$ is the α -Nevanlinna counting function for ϕ .

Recall: If $\alpha = 1$ and ϕ is inner, then $N_{\phi,1}(z) = \log \frac{1}{|\psi_{\phi(0)}(z)|}$, except possibly on a set of logarithmic capacity zero.

Example

Take $\alpha = 1$, ϕ inner with $\phi(0) = 0$, and $u = \phi'$. Then $\check{h}_{u,\phi}^1(z) = \frac{N_{\phi,1}(z)}{\log 1/|z|} = 1$ a.e., and $W_{u,\phi}$ is an isometry on $L^2_a(dA_1)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

References

[1] Čučković, Z., Zhao, R., *Weighted composition operators on the Bergman spaces*, J. London Math. Soc. (2) 70 (2004), 499 - 511.

[2] Gallardo-Gutiérrez, E. A., Kumar, R., Partington, J. R., *Boundedness, compactness and Schatten-class membership of weighted composition operators*, Integr. Equ. Oper. Theory 67(2010), 467-479

[3] Forelli, F., The isometries of H^p, Canad. J. Math.16 (1964), 721 - 728.

[4] Kolaski, C. J., *Isometries of Bergman spaces over bounded Runge domains*, Canad. J. Math. 33 (1981), 1157 - 1164.

[5] Le, T., Self-adjoint, unitary, and normal weighted composition operators in several variables, J. Math. Anal. Appl. 395 (2012), 596 - 607.

[6] Matache, V., *Isometric weighted composition operators*, New York J. Math. 20 (2014), 711 - 726.