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A classical theorem

Theorem (Riemann mapping theorem)

Every simply connected domain D ( C is conformally equivalent to
the open unit disk D.
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The multiply connected case
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The multiply connected case

How to generalize to domains with holes?
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The multiply connected case

How to generalize to domains with holes?

Theorem (Koebe, 1918)

Every n-connected domain is conformally equivalent to the unit
disk minus n− 1 closed disjoint disks.
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Theorem (Koebe, 1918)
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Infinite connectivity
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Infinite connectivity

Definition

A domain Ω in Ĉ is a circle domain if every connected component
of its boundary is either a round circle or a point.
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Infinite connectivity

Definition

A domain Ω in Ĉ is a circle domain if every connected component
of its boundary is either a round circle or a point.
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The boundary of any circle domain contains at most
countably many circles.
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Koebe’s Kreisnormierungsproblem
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Koebe’s Kreisnormierungsproblem

Conjecture (Koebe, 1909)

Every domain D ⊂ Ĉ is conformally equivalent to a circle domain.
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Koebe’s Kreisnormierungsproblem

Conjecture (Koebe, 1909)

Every domain D ⊂ Ĉ is conformally equivalent to a circle domain.

The conjecture is true if

D has finitely many boundary components (Koebe, 1918)

Malik Younsi (University of Hawaii) Removability, rigidity of circle domains and Koebe’s conjecture.



Koebe’s Kreisnormierungsproblem

Conjecture (Koebe, 1909)

Every domain D ⊂ Ĉ is conformally equivalent to a circle domain.

The conjecture is true if

D has finitely many boundary components (Koebe, 1918)

D has at most countably many boundary components
(He–Schramm, 1993).

Malik Younsi (University of Hawaii) Removability, rigidity of circle domains and Koebe’s conjecture.



Uniqueness of the Koebe map
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Conformal rigidity
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if

it has finitely many boundary components (Koebe, 1918).
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if

it has finitely many boundary components (Koebe, 1918).

it has countably many boundary components (He–Schramm,
1993).
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Conformal rigidity

Definition

A circle domain Ω ⊂ Ĉ is conformally rigid if every conformal
map of Ω onto another circle domain is the restriction of a Möbius
transformation.

Ω is conformally rigid if

it has finitely many boundary components (Koebe, 1918).

it has countably many boundary components (He–Schramm,
1993).

Non-rigid circle domains?
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Conformal removability
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Conformally removable sets
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Conformally removable sets

Let E ⊂ C be compact.
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Conformally removable sets

Let E ⊂ C be compact.

Definition

We say that E is conformally removable if every homeomorphism
of the Riemann sphere Ĉ which is conformal outside E is actually
conformal everywhere (hence is a Möbius transformation).
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Conformally removable sets

Let E ⊂ C be compact.

Definition

We say that E is conformally removable if every homeomorphism
of the Riemann sphere Ĉ which is conformal outside E is actually
conformal everywhere (hence is a Möbius transformation).

Single points, circles, line segments (Morera).
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Conformally removable sets

Let E ⊂ C be compact.

Definition

We say that E is conformally removable if every homeomorphism
of the Riemann sphere Ĉ which is conformal outside E is actually
conformal everywhere (hence is a Möbius transformation).

Single points, circles, line segments (Morera).

Sets of σ-finite length (Besicovitch, 1931).
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Conformally removable sets

Let E ⊂ C be compact.

Definition

We say that E is conformally removable if every homeomorphism
of the Riemann sphere Ĉ which is conformal outside E is actually
conformal everywhere (hence is a Möbius transformation).

Single points, circles, line segments (Morera).

Sets of σ-finite length (Besicovitch, 1931).

The complement of a non-removable Cantor set is a non-rigid
circle domain.
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A very brief introduction to quasiconformal mappings
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A very brief introduction to quasiconformal mappings

Let U ⊂ Ĉ be open.
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A very brief introduction to quasiconformal mappings

Let U ⊂ Ĉ be open.

Quasiconformal mapping on U : homeomorphism f satisfying

∂z f = µf ∂z f a.e. onU

for some µf ∈ L∞(U) with ‖µf ‖∞ < 1.
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A very brief introduction to quasiconformal mappings

Let U ⊂ Ĉ be open.

Quasiconformal mapping on U : homeomorphism f satisfying

∂z f = µf ∂z f a.e. onU

for some µf ∈ L∞(U) with ‖µf ‖∞ < 1.

µf := ∂z f /∂z f is the Beltrami coefficient of f (measure of
non-conformality : Weyl’s lemma).
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A very brief introduction to quasiconformal mappings

Let U ⊂ Ĉ be open.

Quasiconformal mapping on U : homeomorphism f satisfying

∂z f = µf ∂z f a.e. onU

for some µf ∈ L∞(U) with ‖µf ‖∞ < 1.

µf := ∂z f /∂z f is the Beltrami coefficient of f (measure of
non-conformality : Weyl’s lemma).

Given any µ measurable on U with ‖µ‖∞ < 1, there exists a
quasiconformal mapping f on U with µf = µ a.e. on U,
unique up to postcomposition with a conformal map
(Measurable Riemann mapping theorem).
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A very brief introduction to quasiconformal mappings

Let U ⊂ Ĉ be open.

Quasiconformal mapping on U : homeomorphism f satisfying

∂z f = µf ∂z f a.e. onU

for some µf ∈ L∞(U) with ‖µf ‖∞ < 1.

µf := ∂z f /∂z f is the Beltrami coefficient of f (measure of
non-conformality : Weyl’s lemma).

Given any µ measurable on U with ‖µ‖∞ < 1, there exists a
quasiconformal mapping f on U with µf = µ a.e. on U,
unique up to postcomposition with a conformal map
(Measurable Riemann mapping theorem).

Closed under composition and inversion, preserve sets of
measure zero, Hölder-continuous, etc.
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Some non-removable sets
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Some non-removable sets

Proposition

Let E ⊂ C be a compact set with positive area. Then E is not
conformally removable.
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Some non-removable sets

Proposition

Let E ⊂ C be a compact set with positive area. Then E is not
conformally removable.

Proof.
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Some non-removable sets

Proposition

Let E ⊂ C be a compact set with positive area. Then E is not
conformally removable.

Proof.

Set µ := 1/2χE .
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Some non-removable sets

Proposition

Let E ⊂ C be a compact set with positive area. Then E is not
conformally removable.

Proof.

Set µ := 1/2χE . Let f : Ĉ → Ĉ be quasiconformal with µf = µ.

Malik Younsi (University of Hawaii) Removability, rigidity of circle domains and Koebe’s conjecture.



Some non-removable sets

Proposition

Let E ⊂ C be a compact set with positive area. Then E is not
conformally removable.

Proof.

Set µ := 1/2χE . Let f : Ĉ → Ĉ be quasiconformal with µf = µ.
Then f is a non-Möbius homeomorphism of Ĉ which is conformal
outside E .
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Some non-removable sets

Proposition

Let E ⊂ C be a compact set with positive area. Then E is not
conformally removable.

Proof.

Set µ := 1/2χE . Let f : Ĉ → Ĉ be quasiconformal with µf = µ.
Then f is a non-Möbius homeomorphism of Ĉ which is conformal
outside E .

There exist non-removable sets of Hausdorff dimension one
and removable sets of Hausdorff dimension two.
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A key observation

Going back to rigid circle domains...
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A key observation

Going back to rigid circle domains...

Proposition

The complement of a non-removable Cantor set is a non-rigid
circle domain.
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A key observation

Going back to rigid circle domains...

Proposition

The complement of a non-removable Cantor set is a non-rigid
circle domain.

In particular, if E is a Cantor set with m(E ) > 0, then Ω := Ĉ \ E
is non-rigid.
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The rigidity conjecture
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The rigidity conjecture

Conjecture (He–Schramm, 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid

(B) ∂Ω is conformally removable
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The rigidity conjecture

Conjecture (He–Schramm, 1994)

Let Ω be a circle domain. The following are equivalent :

(A) Ω is conformally rigid

(B) ∂Ω is conformally removable

If there are no circles in ∂Ω, then (A) ⇒ (B).
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Known cases
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Known cases

∂Ω removable? Ω rigid?

finite y y (Koebe 1918)

countable y y (He–Schramm 1993)

σ-finite y (Besicovitch 1931) y (He–Schramm 1994)

John y (Jones–Smirnov 2000) y (Ntalampekos-Y. 2018)

Hölder y (Jones–Smirnov 2000) y (Ntalampekos-Y. 2018)

Quasi y (Jones–Smirnov 2000) y (Ntalampekos-Y. 2018)

Area > 0 NO NO (Sibner 1968)
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How to prove rigidity?
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The quasihyperbolic condition
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The quasihyperbolic condition

D ( C a domain, δD(x) := dist(x , ∂D) (x ∈ D)
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The quasihyperbolic condition

D ( C a domain, δD(x) := dist(x , ∂D) (x ∈ D)

Definition

We define the quasihyperbolic distance of two points x1, x2 ∈ D
by

kD(x1, x2) = inf
γ

∫

γ

1

δD(x)
ds,

over all rectifiable paths γ ⊂ D that connect x1 and x2.
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The quasihyperbolic condition

D ( C a domain, δD(x) := dist(x , ∂D) (x ∈ D)

Definition

We define the quasihyperbolic distance of two points x1, x2 ∈ D
by

kD(x1, x2) = inf
γ

∫

γ

1

δD(x)
ds,

over all rectifiable paths γ ⊂ D that connect x1 and x2.

Definition

We say that D satisfies the quasihyperbolic condition if∫
D
k(x , x0)

2dx < ∞ for some x0 ∈ D.
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The quasihyperbolic condition

D ( C a domain, δD(x) := dist(x , ∂D) (x ∈ D)

Definition

We define the quasihyperbolic distance of two points x1, x2 ∈ D
by

kD(x1, x2) = inf
γ

∫

γ

1

δD(x)
ds,

over all rectifiable paths γ ⊂ D that connect x1 and x2.

Definition

We say that D satisfies the quasihyperbolic condition if∫
D
k(x , x0)

2dx < ∞ for some x0 ∈ D.

John domains (and more generally Hölder domains) satisfy
the quasihyperbolic condition.
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Let Ω be a circle domain with ∞ ∈ Ω.
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).

Let f : Ω → Ω∗ be a conformal map onto another circle domain
with f (∞) = ∞.
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).

Let f : Ω → Ω∗ be a conformal map onto another circle domain
with f (∞) = ∞.

Show that f maps circle boundary components to circle
boundary components.
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).

Let f : Ω → Ω∗ be a conformal map onto another circle domain
with f (∞) = ∞.

Show that f maps circle boundary components to circle
boundary components.

Show that f maps point boundary components to point
boundary components.
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).

Let f : Ω → Ω∗ be a conformal map onto another circle domain
with f (∞) = ∞.

Show that f maps circle boundary components to circle
boundary components.

Show that f maps point boundary components to point
boundary components.

Show that f extends continuously to Ω.
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).

Let f : Ω → Ω∗ be a conformal map onto another circle domain
with f (∞) = ∞.

Show that f maps circle boundary components to circle
boundary components.

Show that f maps point boundary components to point
boundary components.

Show that f extends continuously to Ω.

Extend f to a homeomorphism f̃ of Ĉ by repeated Schwarz
reflections.
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).

Let f : Ω → Ω∗ be a conformal map onto another circle domain
with f (∞) = ∞.

Show that f maps circle boundary components to circle
boundary components.

Show that f maps point boundary components to point
boundary components.

Show that f extends continuously to Ω.

Extend f to a homeomorphism f̃ of Ĉ by repeated Schwarz
reflections.

Show that f̃ is qc on Ĉ, with ‖µ
f̃
‖∞ ≤ c < 1 for some c

independent of f .
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Let Ω be a circle domain with ∞ ∈ Ω.

Suppose that Ω ∩ B(0,R) satisfies the quasihyperbolic
condition, where Ĉ \ Ω ⊂ B(0,R).

Let f : Ω → Ω∗ be a conformal map onto another circle domain
with f (∞) = ∞.

Show that f maps circle boundary components to circle
boundary components.

Show that f maps point boundary components to point
boundary components.

Show that f extends continuously to Ω.

Extend f to a homeomorphism f̃ of Ĉ by repeated Schwarz
reflections.

Show that f̃ is qc on Ĉ, with ‖µ
f̃
‖∞ ≤ c < 1 for some c

independent of f .

If ‖µ
f̃
‖∞ > 0, construct a conformal map g of Ω onto

another circle domain that satisfies ‖µg̃‖∞ > c , contradiction.
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Further evidence for the conjecture
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Quasiconformal invariance
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Quasiconformal invariance

A compact set E ⊂ C is conformally removable if and only if
it is quasiconformally removable.
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Quasiconformal invariance

A compact set E ⊂ C is conformally removable if and only if
it is quasiconformally removable.

Theorem (Y., 2016)

A circle domain Ω is conformally rigid if and only if it is
quasiconformally rigid.
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Quasiconformal invariance

A compact set E ⊂ C is conformally removable if and only if
it is quasiconformally removable.

Theorem (Y., 2016)

A circle domain Ω is conformally rigid if and only if it is
quasiconformally rigid.

Definition

A circle domain Ω ⊂ Ĉ is quasiconformally rigid if every
quasiconformal mapping of Ω onto another circle domain is the
restriction of a quasiconformal mapping of the whole sphere.
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Further remarks on the rigidity conjecture
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Question

If E ⊂ C is a conformally removable Cantor set, is Ω := Ĉ \ E a
conformally rigid circle domain?
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Counterexamples must be wild!
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Counterexamples must be wild!

Suppose that E is a removable Cantor set but Ω = Ĉ \ E is not
rigid.
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Counterexamples must be wild!

Suppose that E is a removable Cantor set but Ω = Ĉ \ E is not
rigid.

There exists a non-Möbius conformal map f : Ω → Ω∗, where
Ω∗ is a circle domain.
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Counterexamples must be wild!

Suppose that E is a removable Cantor set but Ω = Ĉ \ E is not
rigid.

There exists a non-Möbius conformal map f : Ω → Ω∗, where
Ω∗ is a circle domain.

∂Ω∗ must contain at least one circle.
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Counterexamples must be wild!

Suppose that E is a removable Cantor set but Ω = Ĉ \ E is not
rigid.

There exists a non-Möbius conformal map f : Ω → Ω∗, where
Ω∗ is a circle domain.

∂Ω∗ must contain at least one circle.

Proposition (Ntalampekos–Y. (2018))

Every w ∈ ∂Ω∗ that is not a point boundary component is the
accumulation point of an infinite sequence of distinct circles in
∂Ω∗.
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A Sierpinski-type circle domain
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THANK YOU!
HAPPY BIRTHDAY!
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