Removability, rigidity of circle domains and Koebe's conjecture.

Malik Younsi (University of Hawaii)

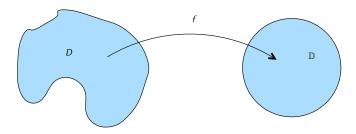
May 24, 2018

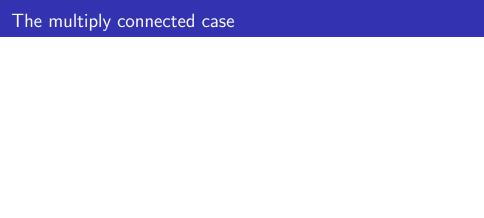
Introduction

A classical theorem

Theorem (Riemann mapping theorem)

Every simply connected domain $D \subsetneq \mathbb{C}$ is conformally equivalent to the open unit disk \mathbb{D} .





The multiply connected case

• How to generalize to domains with holes?

The multiply connected case

• How to generalize to domains with holes?

Theorem (Koebe, 1918)

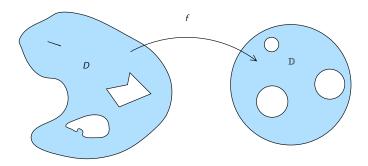
Every n-connected domain is conformally equivalent to the unit disk minus n-1 closed disjoint disks.

The multiply connected case

• How to generalize to domains with holes?

Theorem (Koebe, 1918)

Every n-connected domain is conformally equivalent to the unit disk minus n-1 closed disjoint disks.



Infinite connectivity

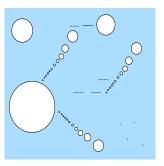
Definition

A domain Ω in $\widehat{\mathbb{C}}$ is a **circle domain** if every connected component of its boundary is either a round circle or a point.

Infinite connectivity

Definition

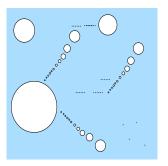
A domain Ω in $\widehat{\mathbb{C}}$ is a **circle domain** if every connected component of its boundary is either a round circle or a point.



Infinite connectivity

Definition

A domain Ω in $\widehat{\mathbb{C}}$ is a **circle domain** if every connected component of its boundary is either a round circle or a point.



 The boundary of any circle domain contains at most countably many circles.

Koebe's Kreisnormierungsproblem

Conjecture (Koebe, 1909)

Every domain $D\subset\widehat{\mathbb{C}}$ is conformally equivalent to a circle domain.

Koebe's Kreisnormierungsproblem

Conjecture (Koebe, 1909)

Every domain $D\subset\widehat{\mathbb{C}}$ is conformally equivalent to a circle domain.

The conjecture is true if

• D has finitely many boundary components (Koebe, 1918)

Koebe's Kreisnormierungsproblem

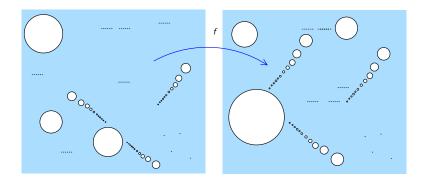
Conjecture (Koebe, 1909)

Every domain $D\subset\widehat{\mathbb{C}}$ is conformally equivalent to a circle domain.

The conjecture is true if

- D has finitely many boundary components (Koebe, 1918)
- D has at most countably many boundary components (He–Schramm, 1993).

Uniqueness of the Koebe map



Definition

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

Definition

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 Ω is conformally rigid if

Definition

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 Ω is conformally rigid if

• it has finitely many boundary components (Koebe, 1918).

Definition

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 Ω is conformally rigid if

- it has finitely many boundary components (Koebe, 1918).
- it has countably many boundary components (He–Schramm, 1993).

Definition

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is **conformally rigid** if every conformal map of Ω onto another circle domain is the restriction of a Möbius transformation.

 Ω is conformally rigid if

- it has finitely many boundary components (Koebe, 1918).
- it has countably many boundary components (He–Schramm, 1993).

Non-rigid circle domains?

Conformal removability

Let $E \subset \mathbb{C}$ be compact.

Let $E \subset \mathbb{C}$ be compact.

Definition

We say that E is **conformally removable** if every homeomorphism of the Riemann sphere $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

Let $E \subset \mathbb{C}$ be compact.

Definition

We say that E is **conformally removable** if every homeomorphism of the Riemann sphere $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

Single points, circles, line segments (Morera).

Let $E \subset \mathbb{C}$ be compact.

Definition

We say that E is **conformally removable** if every homeomorphism of the Riemann sphere $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

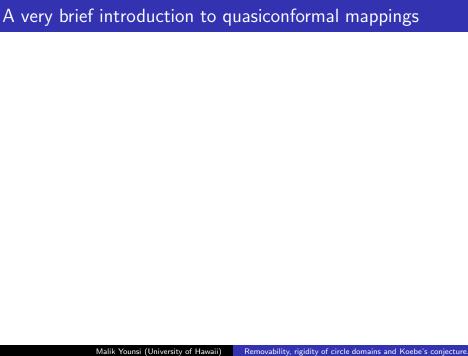
- Single points, circles, line segments (Morera).
- Sets of σ -finite length (Besicovitch, 1931).

Let $E \subset \mathbb{C}$ be compact.

Definition

We say that E is **conformally removable** if every homeomorphism of the Riemann sphere $\widehat{\mathbb{C}}$ which is conformal outside E is actually conformal everywhere (hence is a Möbius transformation).

- Single points, circles, line segments (Morera).
- Sets of σ -finite length (Besicovitch, 1931).
- The complement of a non-removable Cantor set is a non-rigid circle domain.



Let $U \subset \widehat{\mathbb{C}}$ be open.

Let $U \subset \widehat{\mathbb{C}}$ be open.

ullet Quasiconformal mapping on U: homeomorphism f satisfying

$$\partial_{\overline{z}}f = \mu_f \, \partial_z f$$
 a.e. on U

for some $\mu_f \in L^{\infty}(U)$ with $\|\mu_f\|_{\infty} < 1$.

Let $U \subset \widehat{\mathbb{C}}$ be open.

ullet Quasiconformal mapping on U: homeomorphism f satisfying

$$\partial_{\overline{z}}f = \mu_f \, \partial_z f$$
 a.e. on U

for some $\mu_f \in L^{\infty}(U)$ with $\|\mu_f\|_{\infty} < 1$.

• $\mu_f := \partial_{\overline{z}} f / \partial_z f$ is the **Beltrami coefficient** of f (measure of non-conformality : Weyl's lemma).

Let $U \subset \widehat{\mathbb{C}}$ be open.

ullet Quasiconformal mapping on U: homeomorphism f satisfying

$$\partial_{\overline{z}}f = \mu_f \, \partial_z f$$
 a.e. on U

for some $\mu_f \in L^{\infty}(U)$ with $\|\mu_f\|_{\infty} < 1$.

- $\mu_f := \partial_{\overline{z}} f / \partial_z f$ is the **Beltrami coefficient** of f (measure of non-conformality : Weyl's lemma).
- Given any μ measurable on U with $\|\mu\|_{\infty} < 1$, there exists a quasiconformal mapping f on U with $\mu_f = \mu$ a.e. on U, unique up to postcomposition with a conformal map (Measurable Riemann mapping theorem).

Let $U \subset \widehat{\mathbb{C}}$ be open.

ullet Quasiconformal mapping on U: homeomorphism f satisfying

$$\partial_{\overline{z}}f = \mu_f \, \partial_z f$$
 a.e. on U

for some $\mu_f \in L^{\infty}(U)$ with $\|\mu_f\|_{\infty} < 1$.

- $\mu_f := \partial_{\overline{z}} f / \partial_z f$ is the **Beltrami coefficient** of f (measure of non-conformality : Weyl's lemma).
- Given any μ measurable on U with $\|\mu\|_{\infty} < 1$, there exists a quasiconformal mapping f on U with $\mu_f = \mu$ a.e. on U, unique up to postcomposition with a conformal map (Measurable Riemann mapping theorem).
- Closed under composition and inversion, preserve sets of measure zero, Hölder-continuous, etc.

Proposition

Let $E \subset \mathbb{C}$ be a compact set with positive area. Then E is not conformally removable.

Proposition

Let $E \subset \mathbb{C}$ be a compact set with positive area. Then E is not conformally removable.

Proof.

Proposition

Let $E \subset \mathbb{C}$ be a compact set with positive area. Then E is not conformally removable.

Proof.

Set
$$\mu := 1/2\chi_{E}$$
.

Proposition

Let $E \subset \mathbb{C}$ be a compact set with positive area. Then E is not conformally removable.

Proof.

Set $\mu := 1/2\chi_E$. Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be quasiconformal with $\mu_f = \mu$.

Proposition

Let $E \subset \mathbb{C}$ be a compact set with positive area. Then E is not conformally removable.

Proof.

Set $\mu:=1/2\chi_E$. Let $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ be quasiconformal with $\mu_f=\mu$. Then f is a non-Möbius homeomorphism of $\widehat{\mathbb{C}}$ which is conformal outside E.

Proposition

Let $E \subset \mathbb{C}$ be a compact set with positive area. Then E is not conformally removable.

Proof.

Set $\mu:=1/2\chi_E$. Let $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ be quasiconformal with $\mu_f=\mu$. Then f is a non-Möbius homeomorphism of $\widehat{\mathbb{C}}$ which is conformal outside E.

 There exist non-removable sets of Hausdorff dimension one and removable sets of Hausdorff dimension two.

A key observation

Going back to rigid circle domains...

A key observation

Going back to rigid circle domains...

Proposition

The complement of a non-removable Cantor set is a non-rigid circle domain.

A key observation

Going back to rigid circle domains...

Proposition

The complement of a non-removable Cantor set is a non-rigid circle domain.

In particular, if E is a Cantor set with m(E) > 0, then $\Omega := \widehat{\mathbb{C}} \setminus E$ is non-rigid.

The rigidity conjecture

Conjecture (He-Schramm, 1994)

Let Ω be a circle domain. The following are equivalent :

- (A) Ω is conformally rigid
- (B) $\partial\Omega$ is conformally removable

The rigidity conjecture

Conjecture (He-Schramm, 1994)

Let Ω be a circle domain. The following are equivalent :

- (A) Ω is conformally rigid
- (B) $\partial\Omega$ is conformally removable
- If there are no circles in $\partial\Omega$, then **(A)** \Rightarrow **(B)**.

Known cases

Known cases

	$\partial\Omega$ removable?	Ω rigid?
finite	у	y (Koebe 1918)
countable	у	y (He–Schramm 1993)
σ -finite	y (Besicovitch 1931)	y (He–Schramm 1994)
John	y (Jones–Smirnov 2000)	y (Ntalampekos-Y. 2018)
Hölder	y (Jones–Smirnov 2000)	y (Ntalampekos-Y. 2018)
Quasi	y (Jones–Smirnov 2000)	y (Ntalampekos-Y. 2018)
Area > 0	NO	NO (Sibner 1968)

How to prove rigidity?

•
$$D \subsetneq \mathbb{C}$$
 a domain, $\delta_D(x) := \operatorname{dist}(x, \partial D)$ $(x \in D)$

• $D \subsetneq \mathbb{C}$ a domain, $\delta_D(x) := \operatorname{dist}(x, \partial D)$ $(x \in D)$

Definition

We define the quasihyperbolic distance of two points $x_1, x_2 \in D$ by

$$k_D(x_1, x_2) = \inf_{\gamma} \int_{\gamma} \frac{1}{\delta_D(x)} ds,$$

over all rectifiable paths $\gamma \subset D$ that connect x_1 and x_2 .

• $D \subsetneq \mathbb{C}$ a domain, $\delta_D(x) := \operatorname{dist}(x, \partial D)$ $(x \in D)$

Definition

We define the quasihyperbolic distance of two points $x_1, x_2 \in D$ by

$$k_D(x_1, x_2) = \inf_{\gamma} \int_{\gamma} \frac{1}{\delta_D(x)} ds,$$

over all rectifiable paths $\gamma \subset D$ that connect x_1 and x_2 .

Definition

We say that D satisfies the quasihyperbolic condition if $\int_D k(x,x_0)^2 dx < \infty$ for some $x_0 \in D$.

• $D \subsetneq \mathbb{C}$ a domain, $\delta_D(x) := \operatorname{dist}(x, \partial D)$ $(x \in D)$

Definition

We define the quasihyperbolic distance of two points $x_1, x_2 \in D$ by

$$k_D(x_1, x_2) = \inf_{\gamma} \int_{\gamma} \frac{1}{\delta_D(x)} ds,$$

over all rectifiable paths $\gamma \subset D$ that connect x_1 and x_2 .

Definition

We say that D satisfies the quasihyperbolic condition if $\int_D k(x,x_0)^2 dx < \infty$ for some $x_0 \in D$.

 John domains (and more generally Hölder domains) satisfy the quasihyperbolic condition. ullet Let Ω be a circle domain with $\infty \in \Omega.$

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

Let $f: \Omega \to \Omega^*$ be a conformal map onto another circle domain with $f(\infty) = \infty$.

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

Let $f: \Omega \to \Omega^*$ be a conformal map onto another circle domain with $f(\infty) = \infty$.

• Show that *f* maps circle boundary components to circle boundary components.

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

Let $f:\Omega\to\Omega^*$ be a conformal map onto another circle domain with $f(\infty)=\infty$.

- Show that *f* maps circle boundary components to circle boundary components.
- Show that f maps point boundary components to point boundary components.

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

Let $f:\Omega\to\Omega^*$ be a conformal map onto another circle domain with $f(\infty)=\infty$.

- Show that *f* maps circle boundary components to circle boundary components.
- Show that f maps point boundary components to point boundary components.
- Show that f extends continuously to $\overline{\Omega}$.

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

Let $f: \Omega \to \Omega^*$ be a conformal map onto another circle domain with $f(\infty) = \infty$.

- Show that f maps circle boundary components to circle boundary components.
- Show that f maps point boundary components to point boundary components.
- Show that f extends continuously to $\overline{\Omega}$.
- Extend f to a homeomorphism \widetilde{f} of $\widehat{\mathbb{C}}$ by repeated Schwarz reflections.

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

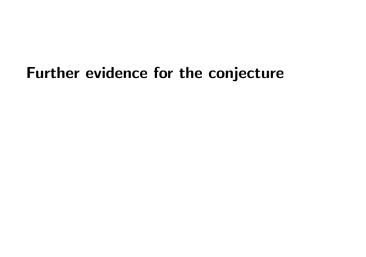
Let $f: \Omega \to \Omega^*$ be a conformal map onto another circle domain with $f(\infty) = \infty$.

- Show that *f* maps circle boundary components to circle boundary components.
- Show that f maps point boundary components to point boundary components.
- Show that f extends continuously to $\overline{\Omega}$.
- Extend f to a homeomorphism \widetilde{f} of $\widehat{\mathbb{C}}$ by repeated Schwarz reflections.
- Show that \widetilde{f} is qc on $\widehat{\mathbb{C}}$, with $\|\mu_{\widetilde{f}}\|_{\infty} \leq c < 1$ for some c independent of f.

- Let Ω be a circle domain with $\infty \in \Omega$.
- Suppose that $\Omega \cap B(0,R)$ satisfies the quasihyperbolic condition, where $\widehat{\mathbb{C}} \setminus \Omega \subset B(0,R)$.

Let $f:\Omega\to\Omega^*$ be a conformal map onto another circle domain with $f(\infty)=\infty$.

- Show that f maps circle boundary components to circle boundary components.
- Show that f maps point boundary components to point boundary components.
- Show that f extends continuously to $\overline{\Omega}$.
- Extend f to a homeomorphism \widetilde{f} of $\widehat{\mathbb{C}}$ by repeated Schwarz reflections.
- Show that \widetilde{f} is qc on $\widehat{\mathbb{C}}$, with $\|\mu_{\widetilde{f}}\|_{\infty} \leq c < 1$ for some c independent of f.
- If $\|\mu_{\widetilde{f}}\|_{\infty} > 0$, construct a conformal map g of Ω onto another circle domain that satisfies $\|\mu_{\widetilde{g}}\|_{\infty} > c$, contradiction.



Quasiconformal invariance

• A compact set $E \subset \mathbb{C}$ is conformally removable if and only if it is *quasiconformally removable*.

Quasiconformal invariance

• A compact set $E \subset \mathbb{C}$ is conformally removable if and only if it is *quasiconformally removable*.

Theorem (Y., 2016)

A circle domain Ω is conformally rigid if and only if it is quasiconformally rigid.

Quasiconformal invariance

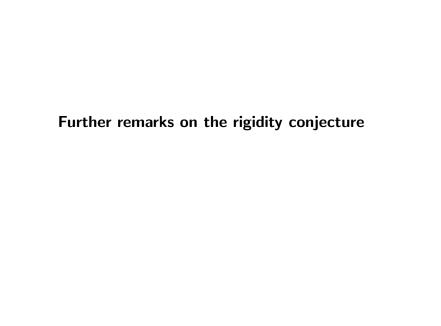
• A compact set $E \subset \mathbb{C}$ is conformally removable if and only if it is *quasiconformally removable*.

Theorem (Y., 2016)

A circle domain Ω is conformally rigid if and only if it is quasiconformally rigid.

Definition

A circle domain $\Omega \subset \widehat{\mathbb{C}}$ is quasiconformally rigid if every quasiconformal mapping of Ω onto another circle domain is the restriction of a quasiconformal mapping of the whole sphere.



Question

If $E \subset \mathbb{C}$ is a conformally removable Cantor set, is $\Omega := \widehat{\mathbb{C}} \setminus E$ a conformally rigid circle domain?

Suppose that E is a removable Cantor set but $\Omega = \widehat{\mathbb{C}} \setminus E$ is not rigid.

Suppose that E is a removable Cantor set but $\Omega = \widehat{\mathbb{C}} \setminus E$ is not rigid.

• There exists a non-Möbius conformal map $f: \Omega \to \Omega^*$, where Ω^* is a circle domain.

Suppose that E is a removable Cantor set but $\Omega = \widehat{\mathbb{C}} \setminus E$ is not rigid.

- There exists a non-Möbius conformal map $f: \Omega \to \Omega^*$, where Ω^* is a circle domain.
- $\partial \Omega^*$ must contain at least one circle.

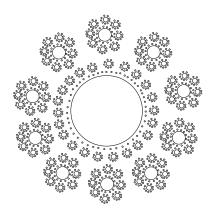
Suppose that E is a removable Cantor set but $\Omega = \widehat{\mathbb{C}} \setminus E$ is not rigid.

- There exists a non-Möbius conformal map $f: \Omega \to \Omega^*$, where Ω^* is a circle domain.
- $\partial \Omega^*$ must contain at least one circle.

Proposition (Ntalampekos-Y. (2018))

Every $w \in \partial \Omega^*$ that is not a point boundary component is the accumulation point of an infinite sequence of distinct circles in $\partial \Omega^*$.

A Sierpinski-type circle domain



THANK YOU! HAPPY BIRTHDAY!