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Overview

The background story . . .

Today we will differentiate functions in nice Banach algebras . . .

. . . these derivatives are better considered as living in bimodules

We also consider higher cohomology, which generalise derivations

For polynomials these higher cohomology groups often vanish

For Banach algebras vanishing of cohomology is much less common

Amenable Banach algebras are famous because Hn(A,X ′) = 0

Sadly even for n = 1, so you can’t differentiate them

When there are derivations they can sometimes be computed . . .

. . . using bimodule maps from the Kähler module, ΩA
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Weakening amenability
Definitions

The Banach algebra A is called amenable
if H1(A;X ′) = 0 for all dual bimodules X ′;

eponimously L1(G ) is amenable iff G is an amenable l.c. group;

The Banach algebra A is called weakly amenable if H1(A;A′) = 0;

A′ is a dual module, and so amenable algebras are weakly amenable;
for commutative algebras this is equivalent to the condition that
H1(A;Y ) = 0 for all commutative bimodules.

Note, in both cases the bimodule A′ plays a special role and this
motivates the study of the higher cohomology of this module.

We call Hn(A;A′) the simplicial cohomology of A,
and denote these groups by HHn(A).
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A toy example – `1(Z+,max)

In this talk we will consider analogues of the algebra

`1(Z+,max) = {f : f =
∞∑
n=0

fnδn, ‖f ‖1 <∞}

where the semigroup operation is given by n ·m = max(n,m)

Recall derivations into commutative bimodules vanish on idempotents
D(e) = D(e2) = e · De + De · e = 2e · De and so (1− 2e)De = 0,
but 1− 2e is invertible (an involution) and so we have De = 0.

Hence this algebra clearly is weakly amenable.

It is slightly more difficult to show that it is not amenable.

We will see that it is rather close to being amenable.
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Justifying (Higher) Cohomology

We already believe in/appreciate

derivations, which satisfy the 1-cocycle equation (δD) = 0

(δD)(a, b) := +a · D(b)− D(ab) + D(a) · b

and inner derivations which are given as 1-coboundaries
δx := (a 7→ a · x − x · a) which is a derivation.

We may then be led to consider approximate derivations where

‖a · D(b)− D(ab) + D(a) · b‖ ≤ ε ‖a‖ ‖b‖ ,

which is just that ‖δD‖ ≤ ε.
Many arguments with derivations work also with approximate
derivations

(δD)(e, e) = e · De − D(e2) + De · e = (2e − 1)De

and so De = −(1− 2e)−1(δD)(e, e),

showing that a D can be recovered from δD on idempotents.
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Definition of Higher Cohomology

The approximate derivations φ := δD, satisfy an equation known as
the 2-cocycle identity, δφ = 0, where

δφ(a, b, c) = aφ(b, c)− φ(ab, c) + φ(a, bc)− φ(a, b)c

General solutions to this equation are called 2-cocycles, Z2(A;Y )

The ‘obvious ones’ (from φ := δD) 2-coboundaries, B2(A;Y )

We measure the gap by the cohomology group H2(A;Y ) := Z2(A;Y )
B2(A;Y )

More generally we define maps between spaces of multilinear maps
from an algebra A into a bimodule Y , δn : Ln(A;Y )→ Ln+1(A;Y )

and introduce Zn(A;Y ), Bn(A;Y ) and Hn(A;Y ) = Zn(A;Y )
Bn(A;Y )

We will be particularly interested in the special cases when Y is A′.
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Simplicially Trivial Algebras

Looking for non-amenable algebras with trivial (simplicial) cohomology

We call an algebra simplicially trivial if HHn(A) = 0 for n ≥ 1.

Clearly this is true of all amenable algebras, e.g. `1(Z ,+).

Also true for the commutative semilattice algebras, `1(S), where S is
a commutative semigroup consisting of idempotents, [Y.Choi, 2006];

Note there are two extreme cases of such algebras
wide orders, e.g. S = 2X with product given by union, and
deep orders Z+ with max as the product.

The simplicial triviality result is true generally for (non-commutative)
semigroups consisting of idempotents (so called bands) that

Theorem (YC, FMG, MCW, 2012)

Let B be a band semigroup then HHn(`1(B)) = 0 for (n ≥ 1).
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From `1 to L1

Blackmore considered simplicial derivations on L1(X , µ)

It is these results which our work generalizes.

Theorem (Blackmore, 1997)

Let X is locally compact and totally ordered set equipped with a σ-finite,
regular Borel positive measure. Then the algebra L1(X , µ) is weakly
amenable if and only if the continuous part of the measure is zero.

Note: there are two extreme cases:

`1(Z+,max) which has no continuous part to the measure and, as we
have seen, is weakly amenable;
L1(R+,max) which has only a continuous part to the measure, and so
is not weakly amenable.

In each case it is natural to ask about the higher simplicial
cohomology groups Hn(A,A′).
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Absolutely Continuous Functions, a.k.a. L1(R+,max)

At first it is not clear that there is a well defined product (worthy of
the name max) on the Banach space L1(R+,max)

In fact it is given by

(f ∗ g)(x) =

∫ x

0
f (t)g(x) dt +

∫ x

0
f (x)g(t) dt,

which (as expected) gives the values of (f ∗ g)(x) as an integral over
the set of pairs mapping to x by the product map.

The characters on this algebra are given by
f̂ (x) =

∫ x
0 f (t) dt (0 < x ≤ ∞) and with this we note that

(f ∗ g)(x) = (f̂ g + f ĝ)(x).

Observe that the product looks rather like a derivation, because . . .

You should notice that the Gelfand transform has a (Radon-Nikodym)
derivative, and f̂ ′(x) = f (x).
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Pretending L1 is `1

Although the algebra L1(R+,max) has few idempotents, unlike
`1(Z+,max), we can still argue as if it did

eg. consider disjointly supported positive functions with integral 1
(say e1 << e2 << e3), then

e1e2 = e2, etc and so

D(e1e2)(e3) = D(e2)(e3e1) + D(e1)(e2e3) = D(e2)(e3) + D(e1)(e3),
hence D(e1)(e3) = 0;

D(e3e2)(e1) = D(e2)(e1e3) + D(e3)(e2e1) = D(e2)(e3) + D(e3)(e2),
hence D(e3)(e1) = D(e3)(e2);

This leads one to suspect the result of Blackmore that the general
form of a simplicial derivation on L1(R+,max) is

D(f )(g) =

∫ ∞
0

∫
x≥y≥0

f (x)g(y) dy tD(x) dx

for some tD in L∞(R+).
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Resolutions – a quick review

Cohomology can be computed in other ways, (like ΩA for derivations)

Instead of multilinear maps from A to Y , Ln(A,Y ) ∼= L(⊗̂n
A,Y )

One can use other bimodules {Pn}∞n=0, which behave like ⊗̂n
A

These modules fit together like the ⊗̂n
A, and have a map like d

A
d← P0

d← P1
d← P2

d← · · ·
Importantly, this is exact, i.e. Im d = Ker d

Typically the Pn are well-behaved bimodules summands of ⊗̂n
A

We need to be particularly generous with which Pn we can use today

Our Pn only need duals which are complemented in (⊗̂n
A)′

Theorem

The cohomology groups Hn(A;X ′) can be computed using any weakly
admissible biflat resolution of A.
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A Resolution for `1(Z+,max)

We begin with the diagram

↙ `1(Z+ ×≥ Z+ × Z+)
0← `1(Z+)← `1(Z+ × Z+) ⊕ ← · · ·

↖ `1(Z+ × Z+ ×≤ Z+)

and then explain the terms.

Note that the bimodule denoted, `1(Z+ ×≥ Z+ × Z+) is the image of
the bimodule projection (a, b, c) 7→ (a ∨ b, b, c) on `1(Z+ × Z+ × Z+)
So it is a bimodule summand and so good for us, i.e. biprojective

We also require that the resolution is: admissible and exact.
This is proved by the construction of a contracting homotopy.
We set s(ω) = eω ⊗ ω. Then ds(ω) = d(eω ⊗ ω) = ω − eω ⊗ dω and
sdω = edω ⊗ dω, and hence (sd + ds)(ω) = ω on decreasing terms,
increasing terms follow similarly using right identities.
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Exactness at a tricky place

`1(Z+ ×≥ Z+ × Z+)
↙

0← `1(Z+)← `1(Z+ × Z+) ⊕ ← · · ·
↖

`1(Z+ × Z+ ×≤ Z+)

Next we will (half) check exactness at `1(Z+ × Z+):

Note: terms like a⊗ b− ab⊗ ab span the kernel of the product map δ

d(a⊗ a⊗ b) = a⊗ b − a⊗ ab = a⊗ b − ab ⊗ ab, if ab = a

ab = b is similar, but exactness at the next level is slightly longer

The resolution machine now gives us:

Theorem

Hn(`1(Z+,max),Y ) = 0 for commutative modules Y and n > 1.
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The corresponding resolution for L1(R+,max)

We begin with the diagram

L∞(R+ ×≥ R+ × R+) → · · ·
↗ ⊕ ⊕

0→ L∞(R+)→ L∞(R+ × R+) → L∞(R̂+) → 0
↘ ⊕ ⊕

L∞(R+ × R+ ×≤ R+) → · · ·

and again explain the terms.

The first observation is that the diagram is more like the dual of the
diagram for `1(Z+,max)

We need to pass to duals as there are no left identities to use for the
contracting homotopy. These maps are now defines using left
approximate units and limits
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The Tricky Places

Most of the checks for exactness are the usual `1 to L1 changes

However, computing the kernel of the map from L∞(R+), we get

F (x ∨ y , z) = F (x , y ∨ z), for x ≥ y , OR y ≤ z

Giving F (y , z) = F (x , z) for x ≤ y ≤ z ,

i.e., F is constant on horizontal lines above the diagonal

Similarly, F is constant on vertical lines below the diagonal

In `1(Z+,max) these lines met at (z , z) and so the function F (x , y)
factors through some G (x ∨ y)

HOWEVER, all the lines above should have said almost everywhere

. . . and the diagonal in ‘almost nowhere’

So we are left with an F in the kernel of the two maps considered

This is why we need the additional element in the resolution

0→ L∞(R+)→ L∞(R+ × R+)→ L∞(R̂+)→ 0
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Resolving the Tricky Place

We have not yet stated the bimodule structure of L∞(R̂+)

This is the Banach space L∞(R+), with (bi)module actions
(f .G )(x) = f̂ (x)G (x) = (G .f )(x)

This is the dual of the similarly defined bimodule L1(R̂+)

Before we define the map δ0 in

0→ L∞(R+)→ L∞(R+ × R+)
δ0

→ L∞(R̂+)→ 0

we need several definitions and computations

The key property which we require of this δ0 is:
for a function constant on horizontal lines above and vertical lines
below the diagonal, if δ0(F ) = 0, then F (x , y) = G (x ∨ y).

This shows that we have recovered exactness in the L∞ case, at a
small cost
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Spreading maps and The Key Lemma

We define a number of functions:
∆N
ε (f ), ∆S

ε (f ), ∆W
ε (f ), ∆E

ε (f ) : L1(R̂+)→ L1(R2
+),

which stretch out f in various directions, (‘from the diagonal’) e.g.,
∆N
ε (f )(x , y) = f (x)ε−1χ(x ≤ y ≤ x + ε)(x , y)

We set ∆ε = ∆N
ε −∆S

ε and ∆′ε = ∆W
ε −∆E

ε .
Now we observe that: limε→0 ‖∆ε(f )−∆′ε(f )‖L1(R2

+) = 0,

as stretching North and West (resp. S and E) are almost equal.
Putting this all together we have an ‘almost bimodule map’ property

Lemma

Let f ∈ L1(R̂+) and h ∈ L1(R+) and so ∆ε(ĥf ) and ∆ε(f ) are in L1(R2
+).

lim
ε→0

∥∥∥h ∗∆ε(f )−∆ε(ĥf )
∥∥∥
L1(R2

+)
= 0 = lim

ε→0

∥∥∥∆ε(f ) ∗ h −∆ε(f ĥ)
∥∥∥
L1(R2

+)

Our map δ0 is a limit of the duals of the maps ∆ε, and as such it
genuinely a bimodule map
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Cohomology of L1(R+,max)

So what have we actually proved ?

We can use the above admissible resolution by biinjective modules to
compute the cohomology of commutative dual modules.

Theorem

Hn(L1(R+,max),X ′) = 0 for commutative dual modules X ′ and n > 1.

The resolution also shows us that H1(A,X ′) = homAe (X , L∞(R̂+)).
It is in this sense that L1(R̂+) plays the role of the Kähler module, ΩA

We are left wondering:
Which other Banach algebras have well-behaved Kähler modules?
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