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Content of my talk

Today I will be talking about some very classical objects :

TOEPLITZ OPERATORS ; TOEPLITZ MATRICES ; AND
CIRCULANT MATRICES

and how the Classical Szego theorem uses the circulants to establish a
relationship between the symbol of a Toeplitz operator and the
spectrum of a sequence of ’approximating’ Toeplitz matrices...

then about objects that have aroused a lot of interest recently :

TRUNCATED TOEPLITZ OPERATORS a.k.a. TTO’s and CLARK
OPERATORS

and a new ’Szego Theorem’ that Dan Timotin, Mohamed Zarrabi and
I established recently (J. Approx Theory, Aug 2017) by using Clark
operators and Sedlock algebras (which generalize circulants) to
establish a relationship between the symbol of a Toeplitz operator and
the spectrum of a sequence of ’approximating’ TTO’s.
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Classical Toeplitz Operators and Matrices

Our operators will be working on a variety of spaces :

(1) The Hilbert space Pn = the polynomials of degree ≤ n equipped
with the usual inner product inherited from Cn ;
(2) H2 the Hardy space viewed as (1)the closed subspace of functions
of L2(T) of functions whose negative Fourier coefficients are equal to
zero ∼= `2(N) with the usual inner product ∼= the set of holomorphic
functions on D of the form :

{f =
∑
n≥0

anz
n,
∑
n≥0

|an|2 < +∞}.

using the (well defined) map taking such a function to its boundary
values (which exist almost everywhere).
(3) Model spaces ; or orthogonal complements in H2 of shift invariant
subspaces (including (1)).
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Classical Toeplitz Operators

A classical Toeplitz operator (on H2) is usually viewed in one of two
ways :

(1) As a matrix with constant diagonals which represents a bounded
operator on `2(N).
(2) As the composition of a multiplication operator Mϕ on H2 with
the orthogonal projection from L2 to H2 - which can be shown to be
bounded if and only if ϕ is a bounded function. In this case the
matrix can be written :

ϕ̂(0) ϕ̂(−1) ϕ̂(−2) · · ·

ϕ̂(1) ϕ̂(0) ϕ̂(−1)
. . .

ϕ̂(2) ϕ̂(1) ϕ̂(0)
. . .

...
. . . . . . . . .


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Classical Toeplitz Matrices and Circulant
Matrices

A classical Toeplitz matrice is, of course, an nxn matrix with constant
diagonals ; which can be interpreted as a compression of a Toeplitz
matrix to the orthogonal complement of zn−1H2

A particularly interesting type of Toeplitz matrix is called a ’circulant
matrix’. These are matrices of the form :

C(a0,a1,··· ,an) =


a0 a1 a2 · · · an

an a0 a1 · · · an−1

an−1 an a0 · · · an−2

...
...

... · · ·
...

a1 a2 · · · an a0

 (1)

The most well-known circulant which interests us is the ’perturbed
shift’ , of the form above, with an = w with |w| = 1 and all other
entries equal to zero.
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The Perturbed Shift

Here is the perturbed shift S1 :
0 ... 0 1
1 0 ... 0
...

. . . . . .
...

0 ... 1 0

 (2)

And it is easy to see that :
(1) The eigenvalues of S1 are the (n)th roots of unity ζk = ei

2kπ
n with

eigenvectors (1, ζk, ζ
2
k , ζ

n−1
k )t and that ;

(2) The general circulant matrix is just p(S1) where p is the
polynomial p(z) = a0 + an−1z + an−2z

n−1 + ...a1z
n−1 (the Toeplitz

symbol of the matrix) and so :

trace(C(a0,a1,··· ,an−1)) =

n−2∑
k=0

p(ei
2kπ
n−1 )

and so 1
n−1 trace(C(a0,a1,··· ,an−1)) is a Riemann sum for the function

p(z) around the unit circle.
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Notation for the Grenander-Szego theorem

These observations - along with a nice way of approaching Toeplitz
matrices by circulant matrices can be used to prove the
Grenander-Szego theorem - we give a little necessary notation to be
able to write the theorem.

Let Tϕ be a Toeplitz operator with symbol function ϕ ∈ L∞(T). For
each n ∈ N we write Tn(ϕ) for the n× n Toeplitz matrix
(ϕ̂(i− j))0≤i,j≤n−1

ϕ̂(0) ϕ̂(−1) · · · ϕ̂(−n− 1)

ϕ̂(1)
. . . . . .

...
...

. . . . . .
...

ϕ̂(n− 1) ϕ̂(n− 2) · · · ϕ̂(0)


and m for normalized Lebesgue measure on the circle.
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The Grenander-Szego theorem

Theorem [U. Grenander-G. Szego] :

We have

lim
n→∞

1

n

n∑
k=1

λk(Tn(ϕ))p =

∫ 2π

0

ϕ(eit)pdm(t),

where λk(Tn(ϕ)), k = 1 . . . n, are the eigenvalues of Tn(ϕ).
Moreover when ϕ is a real valued function then for every continuous
function f on [infT ϕ, supT ϕ],

lim
n→∞

1

n

n∑
k=1

f(λk(Tn(ϕ))) =

∫ 2π

0

(f ◦ ϕ)(eit)dm(t).
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Our Szego theorem

My work with Dan Timotin and Mohamed Zarrabi was a
generalization of the Szego type procedure ; we ’approach’ the
spectrum of our Toeplitz operators by Truncated Toeplitz operators
using an ’approximation’ of the TTOs by elements of what are called
Sedlock algebras. This was the clear thing to do, once we realized that
the Sedlock algebras were the TTO generalization of circulant
matrices.

We recall the definitions :

Definition :

Let u be an inner function and let Ku = H2 	 uH2 be the model
space associated with u. A truncated Toeplitz operator is an operator
Tu[ϕ] : Ku → Ku defined by

Tu[ϕ](g) = Pu(ϕg),

where Pu is the orthogonal projection on Ku.

and, of course, Toeplitz matrices are TTO’s acting on Kzn .
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TTO circulants

The intuitive idea behind all this is that a perturbed shift on Cn or
Pn is obtained in the obvious way by adding a rank 1 operator to the
shift to make it unitary :

Uw = S + w(1⊗ zn−1)

where |w| = 1 and :

(w ⊗ zn−1)(f) =< wf, zn−1 > 1

unitary because the shift ’kills’ zn−1 and its adjoint ’kills’ constants
-and the perturbation remedies this. All rank one unitary
perturbation of the shift are of this form.

The operators called Clark operators generalize this idea to model
spaces. These operators are rank 1 perturbations of the compression
of the shift to the model space Ku, the operator Su = Tu[z].
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Clark operators

For an arbitrary inner function u, 1 is replaced by

k0(z) = 1− u(0)u(z)

and zn−1 is replaced by

K0(z) =
u(z)− u(0)

z

so that our perturbed shift. called a ’Clark operator’ is of the form :

Swu = Su + w(k0 ⊗K0)

Each Clark operator Swu is associated with a Clark measure dµuw on
the unit circle Π such that Swu is unitarily equivalent to multiplication
by z on L2(µuw)
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Simplification

In general the easier way to work with a model space Ku is to begin
by assuming that u(0) = 0 so that k0 = 1 and K0 = u

z , then using the
Crofoot transform to transfer the results to arbitrary inner functions.

For the rest of this talk I will treat the case u(0) = 0 ; the
generalization is straightforward.
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Finite Blaschke products : eigenvalues and
eigenvectors of SαB

What is really nice is that, as in the circulant case, if B is a Blaschke
product of order n then :

(1) The eigenvalues of SαB are simply the solutions of B(z) = α which
we shall call {ξα1 , · · · ξαn} and the eigenvector associated with ξαk is the
reproducing kernel kBξαk in ξBk ; this ’kernel ’ function kBξα is defined by :

kBξ (z) =
1−B(ξ)B(z)

1− ξz

(2)The Clark measure associated with SαB is the measure

µBα =

n∑
k=1

1

|B′(ξαk )|
δξαk
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Generalization of circulants - finite
Blaschke products

Now ; if a function f is applied to SαB the eigenvalues of of f(SαB) will
be (f(ξαk ))nk=1 and so the trace of f(SαB) will be

∑n
k=1 f(ξαk )). Thus

trace
1

|B′ |
f(SαB) should be

∫ 2π

0

fdµBα .

And, in 2011, Nicolas Sedlock, a student of Richard Rochberg wrote a
thesis where he showed that the idea of circulants generalizes to
truncated Toeplitz operators. He showed that, for any inner function
u with u(0) = 0, the maximal subalgebras of Ku are of the form Bαu ,
where A ∈ Bαu if and only if :

Tu[φ+ αu(φ− φ(0))] for some φ ∈ Ku.
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An easier interpretation of Sedlock algebras

In order to obtain our results, we viewed these operators in a different
way :

Theorem
Let B be an arbitrary inner function stisfying B(0) = 0. Suppose that
T = TB [φ+ αu(φ− φ(0))] ∈ Bαu . Then the function φ has radial limits
almost everywhere with respect to µα and, if we denote the limit
function by φ∗ then φ∗ ∈ L∞(µα) and T = φ∗(SαB).

Thus we see that :

Theorem :
If µα is an atomic Clark measure associated with SαB with support the
sequence (ξn) and T = TB [φ+B(φ− φ(0))] then

Trace(T p) =
∑
n

φ∗(ξn)and so Trace(
1

B′(z)
T p) =

∫ 2π

0

φ∗(t)dµBα .
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Generalized circulants

All of this means that the same type of proof can be used to obtain a
Szego theorem for TTOs. For a general sequence of inner function
Un = u1...un the factor 1/n becomes the complicated operator ∆α

u

defined below, and then the question is, which type of sequences
(u1u2...un) can replace the sequence (zn).

Again writing kuζk for the reproducing kernel of Ku at the point ζk we
define the operator :

∆α
u :=

n∑
k=1

1

|u′(ζk)|

(
kuζk
‖kuζk‖

⊗
kuζk
‖kuζk‖

)
.

The condition needed to have the Szego theorem for a sequence (Bn)
replacing (zn) is to have limn→∞ ‖∆α

Bn
‖ → 0, (easily verified by (zn))
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The main theorems - non Blaschke case

Theorem 1[Strouse, Timotin, Zarrabi] :

Suppose that λj ∈ D, j ≥ 1 and
∑

(1− |λj |) =∞. Define, for n ≥ 1,
Bn =

∏n
j=1 bλj , where bλj (z) =

|λj |
λj

λj−z
1−λ̄jz

is the Blaschke factor
corresponding to λ. Then for ψ ∈ C(Π) and p ∈ N we have :
(i)

Tr(TBn [
1

|B′n|
](TBn [ψ])p)→

∫
ψp dm.

If the function ψ is real-valued then, for every continuous function g
on [inf ψ, supψ] we have :
(ii)

Tr(TBn [
1

|B′n|
]g(TBn [ψ])p)→

∫
g ◦ ψp dm.

This theorem works because, if (λj) is a Blaschke sequence, then
limn→∞ ‖∆α

Bn
‖ → 0.
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The main theorems : Blaschke case

Theorem 2 [Strouse, Timotin, Zarrabi] :

Suppose that α ∈ Π, (λj) is a Blaschke sequence, Bn = Πn
k=1bλk and

B = Π∞k=1bλk . Suppose also that limn→∞ ‖∆α
Bn
‖ → 0. Then, if

ψ ∈ (KBN +KBN ) ◦ b−λk for some k,N and p ∈ N we have :

Trace(∆α
Bn(TBn [ψ])p)→

∫
ψpdµαB .
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When is or isn’t the hypothesis ‖∆α
Bn
‖ → 0

satisfied ?

To see that the hypothesis is satisfied when the sequence is not
Blaschke, we notice that :

‖∆α
Bn‖ = sup

1≤j≤n

1

|B′n(ζ
(n)
j )|

,

so that a sufficient condition for ‖∆α
Bn
‖ → 0 would be

inf{|B′n(ζ)| : ζ ∈ T} → ∞. And since, for all ζ ∈ T we have

|B′n(ζ)| ≥ 1

2

n∑
j=1

(1− |λj |).

we see that if
∑
j(1− |λj |) =∞ then ‖∆α

Bn
‖ → 0.

When (λj) is a Blaschke sequence, the situation is more complicated.
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Two examples

Example 1 :(WHEN SZEGO HOLDS) Let(λj) to be the sequence of
points in D obtained by choosing on each circle of radius rm = 1− 1

m4

a number of m2 equidistant points. Then (λj) satisfies the Blaschke
condition, (

∑
(1− |λi|) =

∑
m2(1/m4) <∞ but a concrete

calculation shows that ‖∆α
Bn
‖ → 0 is true, and so the conclusion of

theorem 2 holds.

Example 2 : A straightforward recursive construction gives a Blaschke
sequence (

∑
(1− |λj |) <∞), an integer N , and a function

ψ ∈ KBN +KBN such that

Tr(∆BnTBn [ψ]) 6→
∫
ψ dµBα .

In other words, if condition ‖∆α
Bn
‖ → 0 is not satisfied, then the

assertion (ii) in the above theorem is not necessarily true.
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Final comments - what’s next ?

We would like to get some characterizations of Blaschke sequences for
which Szego type results hold. And figure out how to analyze
eigenvalues of big Toeplitz operators using our results. Finally, it
would be interesting to obtain a Szego type result for singular inner
functions.
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Thanks for your attention !
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