Dirichlet spaces with superharmonic weights

Stamatis Pouliasis
Texas Tech University

Complex Analysis and Spectral Theory
Celebration of Thomas J. Ransford’s 60th birthday
Université Laval
May 21-25, 2018

Stamatis Poulia as Tech University Dirichlet vith superharmonic we



Classical spaces

D={zeC:|z| <1}
A=Area measure

Definition (Hardy space H?)

2 1
feH — Hfo_,z = |F(0)|? + 77/ |f'(2)|? log —|Z|dA(z) < +o0.
D

Definition (Dirichlet space D)

feD <+ / |f'(2)|2dA(z) < +oo0.
D

A\

Definition (BMOA)

|dA( ) < +o0.

f € BMOA < sup/ If'(2))? Iog
weD

\
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Dirichlet spaces with superharmonic weights (A. Aleman, 1993)

e w:D s (0,400], positive superharmonic function

wz) = /Dlog\l‘”ﬂdu(ww/a L= 12,0

z— p ¢ — z[?
= Uu(z) + P.(z),

/D(l — |z[)du(z) < +oo, and v(0D) < 4o0.

Definition (Weighted Dirichlet space D)

feD, /D If'(2)Pw(z)dA(z) < +oo.
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@ Dirichlet spaces D, with harmonic weights, w = P,,
(S. Richter, 1991)

We will concentrate on

@ Dirichlet spaces D,
w(z) = Uu(z) = fD log ‘ 12__WWZ du(w).

o lim,1 U,(r¢) = 0 for almost every ¢ € oD.

2
I£1iB, = 1 + = [ 1F()PU()AG).

Examples (D, spaces with radial superharmonic weights)
° wy(z) = (1—12[*)?, p€(0,1),
o dup = —A((1—|2[*)P)dA(2),
o Lp(D) = +o0.
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Definition (Carleson measures)

For every arc | C 0D with length |/

/
5(/):{r§e]D>:1—|27|T<r<1,§el}.
w is Carleson measure if

sup 1(S(1))
icop ||

e D, C H?, Y,
o if (D) < 400, BMOA C D, C H?,
o if (1—|z|*)du(z) is a Carleson measure, D G D,,.

< Q.

Stamatis Pouliasis T Tech University Dirichlet spaces with superharmonic weights



Definition (Balayage)

If u(D) < 400, the balayage of y is the function

11—z
5#(()—§ p|¢— 2|2

du(z), ¢ € oD.

Note that every f € H? has radial limit £(¢) at almost every
¢ € OD.

Definition (Weighted Hardy spaces Hﬁ)

Suppose (D) < +o0.

H2 = {f e H? / IF(Q)2S,(0)]dC] < +o00}.
oD

Theorem (with G. Bao and N. G. Gogiis)

If i is a Carleson measure, then Dy, = H3.
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Corrolary (with G. Bao and N. G. Gogiis)

Let i be a Carleson measure and let v be a measure on ID. There
exists C > 0 such that

) 1/2
([ Ir@Pa@)” < Clifllp,. e,

if and only if there exists C' > 0 such that

/ 10,2dv < C'lI],
0

for every arc | C 0D, where

_ (+z 1 |d¢]
Ou(z)—exp<8D<_Zlog\/m27r>, zeD,

is an outer function with |0,(C)| = 1/1/Su(C), at almost every
¢ € OD.
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Corrolary (with G. Bao and N. G. Gogis)

Suppose that = Z n—1 an0z, is a Carleson measure, where z, € D
and a, > 0, n € N. The reproducing kernel of D,, for \ € D with
respect to || - ||p, is

anKO Z Zn)KO(Zna )
I = anKO(Znazn)

K(z,\) = Ko(z, \) +Z zeD,

where

and
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Definition
¢ € H? is called inner if |¢(¢)| = 1 for almost every ¢ € OD.

Theorem (Alexander-Taylor-Ullman inequality)
If f € H? with f(0) = 0, then

171, < 2FE2),

Equality holds if and only if f = c¢ where c € C and ¢ is an inner
function satisfying ¢(0) = 0.

N
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Theorem (with G. Bao and N. G. Gogiis)

Suppose (D) < +oo. If f € D,, with f(0) =0,

113, < 1+ o) 2D,

Equality holds if and only if the measure p is of the form
+oo
n = apdp + Z a,,dzn, ap >0, z, €D,
n=1

and f is of the form f = c¢, where ¢ € C and ¢ is an inner
function with ¢(0) = ¢(z,) = 0, for every n € N.
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Proof. Fix w € D.

1—wz|
f'(z 2Iog|7dAz = / log A da
[ IF@PR 108 ="l da(z o, 2 T )

IN
—
(D)
=
E
—
X
-
—~
N
x
>
—~
N

IN

and

2 / |f'(z)|2uu(z)dA(z>
-2/ ([ire )P log "dA( ))di(w)

2

< 2 [ A ()=T
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Suppose that equality holds. Then f = c¢ where c € C and ¢ is
an inner function satisfying ¢(0) = 0.
°

P = hola) - 5= [ Iog(l "2 | Ao (w) P oA (w)

2 1-—
= 1—/Iog‘
™ JD zZ —

o A(cd(D)) = A(cD) = ||,

2|16/ (w)2dA(w).

IR = 2 [ 1ed@PU0A)
]D) —_
= 162 [ [ 16 08|22 aatz) o
= P /D (1~ [6(w))dpu(w)
= C2— C2 w 2 w).
— u(D)[c] Il/D\cb( ) Pdpu(w)
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| totw)Pdutw) =0,
which holds if and only if ¢ = 0 p-almost everywhere. Since the

zeros of ¢ are isolated, the above equality holds if and only if u is
of the form

+oo
n= apdp + Za,,ézn, ap >0, z, €D,
n=1

and the inner function ¢ satisfies ¢(0) = ¢(z,) = 0, for every
neN.
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Definition (The Mobius invariant function space M(D,,))

The Mébius invariant function space M(D,,) generated by D, is
the class of holomorphic functions f on D, with

fllmp,y = sup  |[f o —f(¢(0))|lp, < oo.
deAut(D)

| >
A\

Examples
o M(H?) = BMOA,
e M(D) =D,

o M(Dy) = Qp, pe(0,1).
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Theorem (with G. Bao, J. Mashreghi and H. Wulan)

o If u(D) < +o00, M(D,) = BMOA.

o If u(ID) = +o0, the following are equivalent:
(1) M(D,,) is not trivial,
(2) Dc M(D,),
(3) (1—|z[*)du(z) is a Carleson measure.

Which inner functions are contained in M(D,,) (u(D) = +00)?
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Definition (Carleson-Newman Blaschke products)
A Blaschke product

H |a| aw—z
- ak 1—akz

is called Carleson-Newman Blaschke product if Y72 1 (1 — |ax|?)da
is a Carleson measure.




Theorem (with G. Bao, J. Mashreghi and H. Wulan)

Suppose that (D) = +o00 and let | be an inner function.
@ Ifl € M(D,), | is a Blaschke product.

© Suppose that | is a Carleson-Newman Blaschke product with
zeros {ax}° 4. Then | € M(D,,) if and only if

sup i/ 1—‘1_&,(W) Ydu(w) < .

¢€Aut(D) 1
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Proof. Let 0,(z) = =, a € D.
v=1td, t >0,

5,(2) = exp <t1 “)

—Z

_ 2
.2 =e (~e1 )
S, ¢ M(D,)
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Fix ¢ > 0. Consider the horodisk
1— 2
Dc:{ZGD:M>C}a

11—z

note that
IS,| < et on D,

and let
La = L O O, aeD.
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[ 15 0@ UG = [ (1= IS toulz)P)dn(z)
D D
1—|S,(0.(2)|P)du(z
> /(,Q(DC)( 1,(0a(2))2)du(2)
- / (1 - 15.(2)P)dpa(2)

> (1- eiztc)ﬂ(aa(DC))-
Let ¢,(z) = —o,(z) and note that ¢,(D.) /D as r — 1. Then
lim (1,063, > lim (1-~2)u(6,(Dc)) = (1-~ (D) = +oc.

Sv & M(D,).
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Thank you!

ech Unive



