Dirichlet spaces with superharmonic weights

Stamatis Pouliasis Texas Tech University

Complex Analysis and Spectral Theory Celebration of Thomas J. Ransford's 60th birthday Université Laval May 21-25, 2018

Classical spaces

$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$$

A=Area measure

Definition (Hardy space H^2)

$$f \in H^2 \iff ||f||_{H^2}^2 = |f(0)|^2 + \frac{2}{\pi} \int_{\mathbb{D}} |f'(z)|^2 \log \frac{1}{|z|} dA(z) < +\infty.$$

Definition (Dirichlet space \mathcal{D})

$$f \in D \iff \int_{\mathbb{D}} |f'(z)|^2 dA(z) < +\infty.$$

Definition (BMOA)

$$f \in BMOA \Longleftrightarrow \sup_{w \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 \log \frac{|1 - \overline{w}z|}{|z - w|} dA(z) < +\infty.$$

Dirichlet spaces with superharmonic weights (A. Aleman, 1993)

• $\omega: \mathbb{D} \mapsto (0, +\infty]$, positive superharmonic function

$$\omega(z) = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{w}z}{z - w} \right| d\mu(w) + \int_{\partial \mathbb{D}} \frac{1 - |z|^2}{|\zeta - z|^2} d\nu(\zeta)$$

$$= U_{\mu}(z) + P_{\nu}(z),$$

$$\int_{\mathbb{D}} (1-|z|) d\mu(z) < +\infty, \qquad ext{and} \qquad
u(\partial \mathbb{D}) < +\infty.$$

Definition (Weighted Dirichlet space \mathcal{D}_{ω})

$$f \in \mathcal{D}_{\omega} \iff \int_{\mathbb{D}} |f'(z)|^2 \omega(z) dA(z) < +\infty.$$

• Dirichlet spaces \mathcal{D}_{ν} with harmonic weights, $\omega=P_{\nu}$, (S. Richter, 1991)

We will concentrate on

•

• Dirichlet spaces \mathcal{D}_{μ} ,

$$\omega(z) = U_{\mu}(z) = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{w}z}{z - w} \right| d\mu(w).$$

• $\lim_{r\to 1} U_{\mu}(r\zeta) = 0$ for almost every $\zeta \in \partial \mathbb{D}$.

 $||f||_{\mathcal{D}_{\mu}}^2 = ||f||_{H^2}^2 + \frac{2}{\pi} \int_{\mathbb{D}} |f'(z)|^2 U_{\mu}(z) dA(z).$

Examples (\mathcal{D}_p spaces with radial superharmonic weights)

- $\omega_p(z) = (1 |z|^2)^p$, $p \in (0, 1)$,
- $d\mu_p = -\Delta((1-|z|^2)^p)dA(z)$,
- $\mu_p(\mathbb{D}) = +\infty$.

Definition (Carleson measures)

For every arc $I \subset \partial \mathbb{D}$ with length |I|,

$$S(I) = \{r\zeta \in \mathbb{D} : 1 - \frac{|I|}{2\pi} < r < 1, \zeta \in I\}.$$

 μ is Carleson measure if

$$\sup_{I\subset\partial\mathbb{D}}\frac{\mu(S(I))}{|I|}<\infty.$$

Theorem

- $\mathcal{D}_{\mu} \subset H^2$, $\forall \mu$,
- if $\mu(\mathbb{D}) < +\infty$, BMOA $\subset \mathcal{D}_{\mu} \subset H^2$,
- if $(1-|z|^2)d\mu(z)$ is a Carleson measure, $\mathcal{D} \subsetneq \mathcal{D}_{\mu}$.

Definition (Balayage)

If $\mu(\mathbb{D}) < +\infty$, the balayage of μ is the function

$$S_{\mu}(\zeta) = rac{1}{2\pi} \int_{\mathbb{D}} rac{1 - |z|^2}{|\zeta - z|^2} d\mu(z), \qquad \zeta \in \partial \mathbb{D}.$$

Note that every $f \in H^2$ has radial limit $f(\zeta)$ at almost every $\zeta \in \partial \mathbb{D}$.

Definition (Weighted Hardy spaces H_{μ}^2)

Suppose $\mu(\mathbb{D}) < +\infty$.

$$H^2_\mu = \{f \in H^2: \int_{\partial \mathbb{D}} |f(\zeta)|^2 S_\mu(\zeta) |d\zeta| < +\infty\}.$$

Theorem (with G. Bao and N. G. Göğüş)

If μ is a Carleson measure, then $\mathcal{D}_{\mu} = H_{\mu}^2$.

Corrolary (with G. Bao and N. G. Göğüş)

Let μ be a Carleson measure and let ν be a measure on \mathbb{D} . There exists C>0 such that

$$\Big(\int_{\mathbb{D}}|f(z)|^2d\nu(z)\Big)^{1/2}\leq C||f||_{\mathcal{D}_{\mu}}, \qquad f\in\mathcal{D}_{\mu},$$

if and only if there exists C' > 0 such that

$$\int_{S(I)} |O_{\mu}|^2 d\nu \le C'|I|,$$

for every arc $I \subset \partial \mathbb{D}$, where

$$O_{\mu}(z) = \exp\left(\int_{\partial\mathbb{D}} rac{\zeta+z}{\zeta-z} \lograc{1}{\sqrt{\mathcal{S}_{\mu}(\zeta)}} rac{|d\zeta|}{2\pi}
ight), \qquad z\in\mathbb{D},$$

is an outer function with $|O_{\mu}(\zeta)| = 1/\sqrt{S_{\mu}(\zeta)}$, at almost every $\zeta \in \partial \mathbb{D}$.

Corrolary (with G. Bao and N. G. Göğüş)

Suppose that $\mu = \sum_{n=1}^{+\infty} a_n \delta_{z_n}$ is a Carleson measure, where $z_n \in \mathbb{D}$ and $a_n > 0$, $n \in \mathbb{N}$. The reproducing kernel of \mathcal{D}_{μ} for $\lambda \in \mathbb{D}$ with respect to $||\cdot||_{\mathcal{D}_{\mu}}$ is

$$K(z,\lambda) = K_0(z,\lambda) + \sum_{n=1}^{+\infty} \frac{a_n K_0(z,z_n) K_0(z_n,\lambda)}{1 - a_n K_0(z_n,z_n)}, \qquad z \in \mathbb{D},$$

where

$$\mathcal{K}_0(z,\lambda) = rac{\overline{T_\mu(\lambda)}}{1-\overline{\lambda}z} T_\mu(z), \qquad z \in \mathbb{D},$$

and

$$T_{\mu}(z) = \exp\Big(rac{1}{2\pi}\int_{\partial\mathbb{D}}rac{\zeta+z}{\zeta-z}\lograc{1}{\sqrt{1+\mathcal{S}_{\mu}(\zeta)}}|d\zeta|\Big), \qquad z\in\mathbb{D}.$$

Definition

 $\phi \in H^2$ is called inner if $|\phi(\zeta)| = 1$ for almost every $\zeta \in \partial \mathbb{D}$.

Theorem (Alexander-Taylor-Ullman inequality)

If $f \in H^2$ with f(0) = 0, then

$$||f||_{H^2}^2 \leq \frac{A(f(\mathbb{D}))}{\pi}.$$

Equality holds if and only if $f = c\phi$ where $c \in \mathbb{C}$ and ϕ is an inner function satisfying $\phi(0) = 0$.

Theorem (with G. Bao and N. G. Göğüş)

Suppose $\mu(\mathbb{D})<+\infty$. If $f\in\mathcal{D}_{\mu}$ with f(0)=0,

$$||f||_{D_{\mu}}^2 \leq (1+\mu(\mathbb{D}))\frac{A(f(\mathbb{D}))}{\pi}.$$

Equality holds if and only if the measure μ is of the form

$$\mu = a_0 \delta_0 + \sum_{n=1}^{+\infty} a_n \delta_{z_n}, \qquad a_n > 0, \ z_n \in \mathbb{D},$$

and f is of the form $f = c\phi$, where $c \in \mathbb{C}$ and ϕ is an inner function with $\phi(0) = \phi(z_n) = 0$, for every $n \in \mathbb{N}$.

Proof. Fix $w \in \mathbb{D}$.

$$\int_{\mathbb{D}} |f'(z)|^2 \log \frac{|1 - \overline{w}z|}{|z - w|} dA(z) = \int_{f(\mathbb{D})} \sum_{f(a) = x} \log \frac{|1 - \overline{w}a|}{|a - w|} dA(x)$$

$$\leq \int_{f(\mathbb{D})} G_{f(\mathbb{D})}(x, f(w)) dA(x)$$

$$\leq \frac{1}{2} A(f(\mathbb{D}))$$

and

$$\frac{2}{\pi} \int_{\mathbb{D}} |f'(z)|^2 U_{\mu}(z) dA(z)$$

$$= \frac{2}{\pi} \int_{\mathbb{D}} \left(\int_{\mathbb{D}} |f'(z)|^2 \log \frac{|1 - \overline{w}z|}{|z - w|} dA(z) \right) d\mu(w)$$

$$\leq \frac{2}{\pi} \int_{\mathbb{D}} \frac{1}{2} A(f(\mathbb{D})) d\mu(w) = \frac{\mu(\mathbb{D}) A(f(\mathbb{D}))}{\pi}.$$

Suppose that equality holds. Then $f=c\phi$ where $c\in\mathbb{C}$ and ϕ is an inner function satisfying $\phi(0)=0$.

$$\begin{split} |\phi(z)|^2 &= h_{\phi}(z) - \frac{1}{2\pi} \int_{\mathbb{D}} \log \left| \frac{1 - \overline{w}z}{z - w} \right| \Delta |\phi(w)|^2 dA(w) \\ &= 1 - \frac{2}{\pi} \int_{\mathbb{D}} \log \left| \frac{1 - \overline{w}z}{z - w} \right| |\phi'(w)|^2 dA(w). \end{split}$$

•
$$A(c\phi(\mathbb{D})) = A(c\mathbb{D}) = |c|^2 \pi$$
,

$$\begin{split} \mu(\mathbb{D})|c|^2 &= \frac{2}{\pi} \int_{\mathbb{D}} |c\phi'(z)|^2 U_{\mu}(z) dA(z) \\ &= |c|^2 \frac{2}{\pi} \int_{\mathbb{D}} \int_{\mathbb{D}} |\phi'(z)|^2 \log \left| \frac{1 - \overline{w}z}{z - w} \right| dA(z) d\mu(w) \\ &= |c|^2 \int_{\mathbb{D}} (1 - |\phi(w)|^2) d\mu(w) \\ &= \mu(\mathbb{D})|c|^2 - |c|^2 \int_{\mathbb{D}} |\phi(w)|^2 d\mu(w). \end{split}$$

$$\int_{\mathbb{D}} |\phi(w)|^2 d\mu(w) = 0,$$

which holds if and only if $\phi=0$ μ -almost everywhere. Since the zeros of ϕ are isolated, the above equality holds if and only if μ is of the form

$$\mu = a_0 \delta_0 + \sum_{n=1}^{+\infty} a_n \delta_{z_n}, \qquad a_n > 0, \ z_n \in \mathbb{D},$$

and the inner function ϕ satisfies $\phi(0) = \phi(z_n) = 0$, for every $n \in \mathbb{N}$.

Definition (The Möbius invariant function space $M(\mathcal{D}_{\mu})$)

The Möbius invariant function space $M(\mathcal{D}_{\mu})$ generated by \mathcal{D}_{μ} is the class of holomorphic functions f on \mathbb{D} , with

$$||f||_{M(\mathcal{D}_{\mu})} = \sup_{\phi \in \operatorname{Aut}(\mathbb{D})} ||f \circ \phi - f(\phi(0))||_{\mathcal{D}_{\mu}} < \infty.$$

Examples

- $M(H^2) = BMOA$,
- $M(\mathcal{D}) = \mathcal{D}$,
- $M(\mathcal{D}_p) = \mathcal{Q}_p, \ p \in (0,1).$

Theorem (with G. Bao, J. Mashreghi and H. Wulan)

- If $\mu(\mathbb{D}) < +\infty$, $M(\mathcal{D}_{\mu}) = BMOA$.
- If $\mu(\mathbb{D}) = +\infty$, the following are equivalent:
 - (1) $M(\mathcal{D}_{\mu})$ is not trivial,
 - (2) $\mathcal{D} \subset M(\mathcal{D}_{\mu})$,
 - (3) $(1-|z|^2)d\mu(z)$ is a Carleson measure.

Which inner functions are contained in $M(\mathcal{D}_{\mu})$ ($\mu(\mathbb{D}) = +\infty$)?

Definition (Carleson-Newman Blaschke products)

A Blaschke product

$$B(z) = \prod_{k=1}^{\infty} \frac{|a_k|}{a_k} \frac{a_k - z}{1 - \overline{a_k} z}$$

is called Carleson-Newman Blaschke product if $\sum_{k=1}^{\infty} (1-|a_k|^2)\delta_{a_k}$ is a Carleson measure.

Theorem (with G. Bao, J. Mashreghi and H. Wulan)

Suppose that $\mu(\mathbb{D}) = +\infty$ and let I be an inner function.

- **1** If $I \in M(\mathcal{D}_{\mu})$, I is a Blaschke product.
- ② Suppose that I is a Carleson-Newman Blaschke product with zeros $\{a_k\}_{k=1}^{\infty}$. Then $I \in M(\mathcal{D}_{\mu})$ if and only if

$$\sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - \left| \frac{a_k - \phi(w)}{1 - \overline{a_k} \phi(w)} \right|^2) d\mu(w) < \infty.$$

Proof. Let
$$\sigma_a(z)=\frac{a-z}{1-\overline{a}z},\ a\in\mathbb{D}.$$

$$\nu=t\delta_1,\ t>0,$$

$$S_{\nu}(z)=\exp\left(-t\frac{1+z}{1-z}\right)$$

$$|S_{\nu}(z)|=\exp\left(-t\frac{1-|z|^2}{|1-z|^2}\right)$$

$$S_{\nu}\not\in M(\mathcal{D}_u)$$

Fix c > 0. Consider the horodisk

$$D_c = \left\{ z \in \mathbb{D} : \frac{1 - |z|^2}{|1 - z|^2} > c \right\},$$

note that

$$|S_{\nu}| \leq e^{-tc}$$
, on D_c ,

and let

$$\mu_{\mathsf{a}} = \mu \circ \sigma_{\mathsf{a}}, \qquad \mathsf{a} \in \mathbb{D}.$$

$$\begin{split} \int_{\mathbb{D}} |(S_{\nu} \circ \sigma_{a})'(z)|^{2} U_{\mu}(z) dA(z) &= \int_{\mathbb{D}} (1 - |S_{\nu}(\sigma_{a}(z))|^{2}) d\mu(z) \\ &\geq \int_{\sigma_{a}(D_{c})} (1 - |S_{\nu}(\sigma_{a}(z))|^{2}) d\mu(z) \\ &= \int_{D_{c}} (1 - |S_{\nu}(z)|^{2}) d\mu_{a}(z) \\ &\geq (1 - e^{-2tc}) \mu(\sigma_{a}(D_{c})). \end{split}$$

Let $\phi_r(z) = -\sigma_r(z)$ and note that $\phi_r(D_c) \nearrow \mathbb{D}$ as $r \to 1$. Then

$$\lim_{r \to 1} \|S_{\nu} \circ \phi_r\|_{\mathcal{D}_{\mu}}^2 \ge \lim_{r \to 1} (1 - e^{-2tc}) \mu(\phi_r(D_c)) = (1 - e^{-2tc}) \mu(\mathbb{D}) = +\infty.$$

$$S_{\nu} \not\in \mathcal{M}(\mathcal{D}_{\nu}).$$

Thank you!