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An open set U C C and some boundary points:
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problem < capacity

Wiener (1924): Regular points for the Dirichlet problem on RY: ¢
Newtonian capacity.

Mel'nikov (1966): <+ Peak points for R(X): analytic capacity.
Peak points for A(U): <> continuous analytic capacity.

Gamelin and Garnett (1970): Bounded holomorphic functions on
U: <+ analytic capacity.

Hedberg (1969): RP(X): <> a condenser capacity.
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Kinds of boundary value

» Concrete: limit taken in some set.
» Abstract: continuous linear functional on some Banach space
B C Hol(U):

Abstract version should be sensible on some dense subset of B, and
norm-continuous there, so that it has a unique extension to B.
Concept: continuous point evaluation.
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Concept: continuous point derivation of order k.
Hallstrom (1969): 3 on R(X):

o0

> 2ty (A,(b) \ X) < +o0.

n=1

Hedberg (1972): 3 on RP(X):

Zz(k“ 9T (An(b) \ X) < +o0.
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Lipschitz class holomorphic function spaces
Fix 0 < a <1, U € C open and consider

AY(U) = {f € lip(«) : f is holo on U}.

Lemma

A= {f € A%(U) : f is holo near a} is dense in A*(U) in Lipa
norm.

Dolzhenko (1966): The boundary point b is removable for A%(U) if
and only if MI*%(B ~ U) = 0 for some ball B about b.

Lord-OF (1991): A%(U) admits a continuous point
derivation at b if and only if

> 4"MIT(Ap(b) ~ U) < 4oc.
n=1
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Concrete results go back to work of Wang and O’F from the
1970’s, in the case of bounded functions. More recently, there are
results about Lipschitz spaces.

Q: Suppose A%(U) admits a continuous point derivation at b, and
let O be the normalised derivation there. Is there a set E C U such

that ¢ b

() tim T@ZIO) _5e e e a

a—b,acE a—>b

Theorem
(1) (2014) If U contains an open triangle with vertex at b, then (*)
holds when E is the angle bisector at b.
(2) (2016) In general, (*) holds for some E having full area density
at b.
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This raises the question: what do M? and M? have to do with the
boundary behaviour of analytic functions when 0 < 3 < 17.
What is the significance of the condition

3" 2"MP (A, \ U) < +oo,
n=1

when 0 < 3 < 1, where U is a bounded open subset of C and
beoU?



The answer involves the so-called ‘negative Lipschitz spaces’.
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Theorem

Let0< B <lands=p—1. Let U C C be a bounded open set,
and b € OU. Then A°(U) admits a continuous point evaluation at
b if and only if

ST 2"ME(AL\ U) < o,
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Theorem

let0< < lands=p—1. Let U C C be a bounded open set,
and b € OU. Then B*(U) admits a weak-star continuous point
evaluation at b if and only if

> 2"MP(A,\ U) < +oo,
n=1
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There are similar theorems about bounded point derivations, and
the theorems have versions that are about ordinary harmonic
functions.

It time allows, we shall explain some details of this story, and the
conceptual framework around it.
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2-D Complex Analysis: on R?

Why?

Classically, one considers complex analysis on a domain, a
connected open set. — Analytic continuation — Natural
boundaries

Example:

[ duQ) 1
f(z)—/cz_(_,u* )
Example: Curve (or 1-chain, or 1-cycle) T.

_ 1 [fdC
g(z)—% c -z

Behaviour inside and outside. ‘Same function’.
Functions analytic on possibly disconnected open sets.
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Intrinsic capacities

(1) (1972) a(F,-), where F(X) is a uniform algebra for each
compact X C C.

» Local and Global capacity uniqueness.
» Peak points and bounded point derivations.

More general framework:
(2) (1985) L-F-cap, associated to an elliptic L and a Banach SCS,
F.
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Symmetric concrete spaces (SCS)

A Symmetric Concrete Space (SCS) on R? is a complete
locally-convex topological vector space F over the field C, such
that

» D — F — D%

» F is a topological D-module under the usual product ¢ - f of a
test function and a distribution;

» F is closed under complex conjugation;

» The affine group of RY acts by composition on F, and each
compact set of affine maps gives an equicontinuous family of
composition operators.
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The most useful ideas concern localness. For SCS F and G,

Fioc ={f€D:p-feF, Vo D},

Fes :={p-f€F:pecD},

1
FE G < Foc = G

loc

F=G < Floc:GIom

and observe that
loc loc

F:/:Ioc: ch-
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Some SCS theory (1985-93)

(1) A Fundamental Theorem of Calculus for SCS:
DfF' [DF & F,

(2) A I-reduction principle that allows us to establish equivalences
between problems for different operators L, by relating them to the
identity operator 1: f — f.

1f = 0 on U just means that U Nspt(f) = (). The idea is to reduce
questions about L and some space F to equivalent problems about
1 and the space LF.

(3) A general Sobolev-type embedding theorem

(4) A theorem that says that in dimension two all SCS are
essentially invariant under the Vitushkin localization operators.
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The spaces Ts and C

The Poisson kernel:
t

Py(z) = ——,
&)= o)

(t>0,zeC).
The Poisson transform: F(z,t) := (P * f)(z)
Let s<O0and f € &*. Then f € T if

If]ls == sup{t*|F(z,t)| : z € C, t > 0} < +o0,
and f € Cs if, in addition,

lim ¢t* F(z,t): C} =0.
im t*sup{|F(z,)] : 2€ C} = 0

These extend Lip(s)cs and lip(s)cs to negative S.
Complete them to Banach spaces.
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A*(U) and B*(U):

For an open set U C C, and s € R, let
A*(U) :={f € Gs : f is holomorphic on U},

and
B*(U) := {f € Ts : f is holomorphic on U}.

Lemma

For each s € R, each open set U C C and each b € C, The set
{f € A°(U) : f is holomorphic on some neighbourhood of b} is
dense in A*(U).

Proof.

of
Use T, (f) := % * (¢ - ﬁ)

and a standard pincher.
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Standard pinchers

Ni(¢p) := diam(spt())* - sup [V¥¢].

Ni(k - ) = £ - Ni().
No(p) < Ni(p) < Na(p) <---,
Nie(p - ) < 2“Ni(@) Nie()
P(x) = p(r-x) = Ni(¢) = N(0).
A standard pincher (p,), at b has:
> ¢, = 1 near b,

> spton — {b},
> sup, Ni(pn) < 400, for all k € N.
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Estimating (¢, f)

Beyond Cauchy-Schwartz-Halder.

(o, )] < K -Ne() - Il - (1-Fcap)(spt(p - )).
Version:
(L, F)] < K- Ni(9) - [FllF - (L-Fcap)(spt( - £).

cf. Vitushkin (d-bar), Mazaloff (A).
Simple example:

{0 )| < K-No() - [[ ]|~ - volume(spt(y - ).
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The strong module property:

le - fllF < K(F) - Ni(e) - I |-
Many SCBS have this strong module property. It implies

(. F)] < K- Ni() - If]|F,

whenever spt(p - ) € B(0,1).
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Scaling and covering

For F = T, with —2 < s < 0, scaling gives
(@ F)] < K-Nie) - | fllF - r**2,
whenever spt(¢ - f) € B(0,r). Then a covering argument gives
[0, )] < K-Ni() - IfllF - M= (spt(e - ).

and for f € C3,

(o, ) < K- Ni(p) - I fllF - M (spt(y - ).
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If the series converges:

where
> spty, is contained in 3 annuli,

» S, ¢n=10nB(0,1)\ {0}, and
> N3(¢n) < K, hence N3(£2) < K- 2"

FO) < K- 2" MI(An\ U) - ||f]s.

n=1



If the series diverges:

Use Frostman's Lemma to find measures p, on A, \ U such that



If the series diverges:

Use Frostman's Lemma to find measures p, on A, \ U such that
> C(un) € A°(U),



If the series diverges:

Use Frostman's Lemma to find measures p, on A, \ U such that
> (un) € A(U),
> hy = ZnN:1 &(un) has bounded Ts-norm, and



If the series diverges:

Use Frostman's Lemma to find measures p, on A, \ U such that
> &(un) € A(U),
> hy = ZnN:1 &(un) has bounded Ts-norm, and
» hyn(0) is unbounded.
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