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May 21-25, 2018

Application of entire functions in Banach algebras



Entire Functions of Exponential Type
Polynomial Power Growth

Subexponential Power Growth
Exponential power growth

Elementary Properties
Gleason–Kahane–Zelazko Result

Type

An entire function f is said to be of exponential type if it satisfies
the growth restriction

|f (z)| ≤ Aeα|z |, (z ∈ C).

The type of f is

σf = inf α = lim sup
z→∞

log |f (z)|

|z |
.

Attention: We might have σf = 0, e.g., for polynomials.
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Hadamard’s Theorem (special case)

Theorem

Let f be an entire function of exponential type such that

f (z) 6= 0, (z ∈ C).

Then there are constants α, β ∈ C such that

f (z) = eαz+β, (z ∈ C).
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A Uniqueness Result

Let p be a polynomial such that

|p(x)| ≤ M, (x ∈ R).

Then p is constant.
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A Uniqueness Result (polynomials growth)

Let p be a polynomial such that

|p(x)| ≤ M|x |k , (x ∈ R).

Then p is a polynomial of degree at most k .
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A Uniqueness Result

Theorem

Let f be an entire function of exponential type zero such that

|f (x)| ≤ M, (x ∈ R).

Then f is constant.
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A Uniqueness result

Corollary

Let f be an entire function of exponential type zero such that

f (x) = O(|x |k), (x → ±∞).

Then f is a polynomial of degree at most k.
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Maximal Ideal Space

Let A be a Banach algebra. A nonzero linear functional
Λ : A −→ C is said to be multiplicative if

Λ(ab) = Λ(a)Λ(b), (a, b ∈ A).

It is easy to see that ker(Λ) is a maximal ideal of A. Moreover,
given any maximal ideal M in A, there is a unique nonzero
multiplicative linear functional Λ such that ker(Λ) = M.
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Theorem (Gleason–Kahane–Zelazko, 1968)

Let A be a (commutative) Banach algebra. Let Λ : A −→ C be a
nonzero bounded linear functional on A. Then Λ is multiplicative if
and only if

Λ(a) ∈ Sp(a)

for all a ∈ A.
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Proof.

Easy direction: If Λ is multiplicative, then Λ(e) = 1 and hence

Λ
(

a− Λ(a
)

e) = 0.

Therefore, a− Λ(a)e cannot be invertible, i.e., Λ(a) ∈ Sp(a).
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Proof.

Technical direction: Assume that Λ(a) ∈ Sp(a) for all a ∈ A. Our
goal is to show that Λ is multiplicative.

Fix a ∈ A, and define

f (z) = Λ(eaz), (z ∈ C).
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Proof.

- f is an entire function of exponential type.

- f (0) = Λ(e) ∈ Sp(e) = {1}. In short, f (0) = 1.

- eaz is invertible in A. In other words, 0 6∈ Sp(eaz ). By the main
assumption, Λ(eaz) ∈ Sp(eaz ).

Therefore,
f (z) = Λ(eaz ) 6= 0, (z ∈ C).

Application of entire functions in Banach algebras



Entire Functions of Exponential Type
Polynomial Power Growth

Subexponential Power Growth
Exponential power growth

Elementary Properties
Gleason–Kahane–Zelazko Result

Proof.

Hence, By Hadamard’s theorem, there are constants α, β ∈ C such
that

f (z) = Λ(eaz) = eαz+β, (z ∈ C).

Considering the Taylor coefficients of both sides, and that
f (0) = 1, we deduce

Λ(an) = αn = (Λ(a))n, (n ≥ 1).

But, even Λ(a2) = (Λ(a))2 is enough to ensure that Λ is
multiplicative.
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Nilpotent Elements

Theorem (Allan, 1996)

Let a be an element of a unital Banach algebra, and let k ≥ 0.
Then

‖(1 + a)n − (1− a)n‖ = O(nk), (n → ∞),

if and only if

a
k+2 = 0 (k odd) while a

k+1 = 0 (k even).
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Proof.

‘Only if’: Trivial.

‘If’: Let Λ be a continuous linear functional on the Banach algebra,
and define f : C → C by

f (z) = Λ(eaz − e−az), (z ∈ C).

Hence, f is an entire function of exponential type. The Taylor
expansion of f is

f (z) = 2
∑

n odd
n≥0

Λ(an)

n!
zn.
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Proof.

Therefore, the type of f is estimated as

σf = lim sup
n odd
n→∞

|Λ(an)|1/n ≤ lim sup
n→∞

‖an‖1/n = r(a).

An very essential step is to show that

σf = 0.

To do so, we show that r(a) = 0.
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Proof.

Let λ ∈ Sp(a). Thus,

(1 + λ)n − (1− λ)n ∈ Sp
(

(1 + a)n − (1 − a)n
)

, (n ≥ 1).

By assumption,

(1 + λ)n − (1− λ)n = O(nk), (n → ∞).

Therefore, λ = 0, otherwise the left hand side has exponential
growth. In short, r(a) = 0.
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Proof.

For x ≥ 0,

ex |f (x)| = |Λ(ex(1+a) − ex(1−a))|

≤ ‖Λ‖
∑

n≥1

‖(1 + a)n − (1− a)n‖

n!
xn

≤ C
∑

n≥1

nk

n!
xn

≤ C (1 + xk)ex .
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Proof.

Hence,
|f (x)| ≤ C (1 + |x |k), (x ≥ 0).

As f is an odd function, the same inequality persists for all x ∈ R.
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Proof.

Therefore, by the uniqueness result,

f (z) = Λ(eaz − e−az)

must be a polynomial of degree at most k . Considering the Taylor
coefficients of f , we deduce

Λ(ak+2) = 0 (k odd) while Λ(ak+1) = 0 (k even).

Since this holds for all functionals Λ, the result follows.
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Subexponential Power Growth

Allan assumed that

‖(1 + a)n − (1− a)n‖ = O(nk), (n → ∞).

What happens if we suppose that, for some ρ ∈ (0, 1),

‖(1 + a)n − (1− a)n‖ = O(eεn
ρ

), (n → ∞,∀ε > 0)?
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Our Tool

Let (tn)n≥1 be a sequence of positive real numbers with
∑

1/tn < ∞. Then we exploit

w(z) =
∏

n≥1

(

1 +
z

tn

)

. (1)

In particular, we need

wα(z) =
∏

n≥1

(

1 +
z

(n − 1
2)

1
α

)

, α ∈ (0, 1). (2)
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Growth of wα

We know that

|wα(iy)| ∼ 2−
1
2α exp

(

δ |y |α
)

, (y → ±∞),

and

wα(x) ∼ 2−
1
2α exp

(

δ

cos(πα2 )
xα
)

, (x → +∞),

where
δ =

π

2 sin(πα2 )
.
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A Phragmén-Lindelöf principle

Theorem

Let f be an entire function of type zero. Assume that

|f (iy)| ≤ |w(iy)|, (y ∈ R),

where w is defined as in (1). Then

|f (z)| ≤ w(|z |), (z ∈ C).
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A Phragmén-Lindelöf principle

Corollary

Let f be an entire function of type zero. Assume that

|f (iy)| ≤ C exp(δ|y |α), (y → ±∞).

Then

|f (z)| ≤ C exp

{

δ

cos(πα/2)
|z |α

}

, (z → ∞).
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JM–Ransford

Theorem (JM–Ransford, 2004)

Let a be an element of a unital Banach algebra, and let ρ ∈ (0, 1).
Then the following are equivalent:

(I)

‖(1 + a)n‖ and ‖(1− a)n‖ = O(eεn
ρ

), (n → ∞,∀ε > 0),

(II)

‖(1 + a)n − (1− a)n‖ = O(eεn
ρ

), (n → ∞,∀ε > 0),

(III)

lim
n→∞

n
1
ρ
−1

‖an‖
1
n = 0.
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Proof.

(I ) =⇒ (II ): Trivial.

(II ) =⇒ (III ): Fix ε > 0. Let Λ be a continuous linear functional
on the Banach algebra, and define f : C → C by

f (z) = Λ(eaz − e−az), (z ∈ C).

We know that f is an entire function of exponential type zero.
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Proof.

For x ≥ 0,

ex |f (x)| = |Λ(ex(1+a) − ex(1−a))|

≤ ‖Λ‖
∑

n≥0

‖(1 + a)n − (1− a)n‖

n!
xn

≤ C
∑

n≥0

eεn
ρ

n!
xn.
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Proof.

Since, for ρ ∈ (0, 1) and ε > 0,

∑

n≥0

eεn
ρ

n!
xn = O(ex+2εxρ), (x → +∞),

we deduce
|f (x)| ≤ Ce2ε|x |

ρ

, (x ≥ 0).

As f is an odd function, the same inequality persists for all x ∈ R.

Application of entire functions in Banach algebras



Entire Functions of Exponential Type
Polynomial Power Growth

Subexponential Power Growth
Exponential power growth

The Question
The Auxiliary Family gα
Our Characterization

Proof.

Hence, by the corollary, we have

|f (z)| ≤ C exp
( 2ε

cos(πρ2 )
|z |ρ
)

, (z ∈ C). (3)
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Proof.

The Taylor expansion of f is

f (z) = 2
∑

n odd
n≥0

Λ(an)

n!
zn.

The Taylor coefficients can be estimated using the standard
Cauchy estimates together with (3).
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Proof.

This yields

2|Λ(an)|

n!
≤

C

Rn
exp

(

2ε

cos(πρ2 )
Rρ

)

, (n odd, R > 0).

The right-hand side is minimized when

2ε

cos(πρ2 )
ρRρ−1 − nR−1 = 0.
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Proof.

This gives

2|Λ(an)|

n!
≤ C

( 2eερ

n cos(πρ2 )

)
n
ρ

, (n odd).

This is true for each Λ (with a constant C depending on Λ).
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Proof.

Magic: By the uniform boundedness principle, there exists a
universal constant C such that

2‖an‖

n!
≤ C

( 2eερ

n cos(πρ2 )

)
n
ρ

, (n odd).
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Proof.

Take n-th roots, let n → ∞ and use Stirling’s formula to obtain

lim sup
n odd
n→∞

n
1
ρ
−1‖an‖1/n ≤

1

e

( 2eερ

cos(πρ2 )

)
1
ρ

.

Finally, as ε is arbitrary,

lim
n odd
n→∞

n
1
ρ
−1‖an‖1/n = 0,

which is part (III ).

Application of entire functions in Banach algebras



Entire Functions of Exponential Type
Polynomial Power Growth

Subexponential Power Growth
Exponential power growth

The Question
The Auxiliary Family gα
Our Characterization

Proof.

(III ) =⇒ (I ): Given ε > 0, choose δ > 0 so that

(eδ)ρ

eρ
=

ε

2
.

As n
1
ρ
−1‖an‖

1
n < δ for all large enough n, using Stirling’s formula

again, there exists a constant C such that

‖an‖

n!
≤ C

(eδ)n

nn/ρ
, (n ≥ 1).
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Proof.

Therefore,

‖(1 ± a)n‖ ≤
n
∑

k=0

(

n

k

)

‖ak‖

≤ 1 +
n
∑

k=1

nk
‖ak‖

k!

≤ 1 + C

n
∑

k=1

(neδ)k

k
k
ρ

.
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Proof.

By elementary calculus,

Ak

k
k
ρ

≤ exp(A
ρ

eρ ),

for all A > 0 and k ≥ 1. Hence,

‖(1 ± a)n‖ ≤ 1 + Cn exp
(neδ)ρ

eρ
= O(eεn

ρ

), (n → ∞),

which is part (I ).

Application of entire functions in Banach algebras



Entire Functions of Exponential Type
Polynomial Power Growth

Subexponential Power Growth
Exponential power growth

The Conjecture
An Affirmative Answer

Theorem (Chalendar–Kellay–Ransford, 2000)

Let a be an element of a unital Banach algebra, and let α ∈ (0,∞)
and β ∈ (1,∞) be such that β2 − α2 = 1. Suppose that

‖(1 + a)n‖ and ‖(1 − a)n‖ = O(βn), (n → ∞).

Then
‖an‖ = O(αn log n), (n → ∞).
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Conjecture (Chalendar–Kellay–Ransford, 2000)

Let a be an element of a unital Banach algebra, and let α ∈ (0,∞)
and β ∈ (1,∞) be such that β2 − α2 = 1. Suppose that

‖(1 + a)n‖ and ‖(1 − a)n‖ = O(βn), (n → ∞).

Then
‖an‖ = O(αn), (n → ∞).
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JM–Ransford

Theorem (JM–Ransford, 2005)

Let a be an element of a unital Banach algebra, and let α ∈ (0,∞)
and β ∈ (1,∞) be such that β2 − α2 = 1. Then

‖(1 + a)n‖ and ‖(1 − a)n‖ = O(βn), (n → ∞), (4)

if and only if
‖an‖ = O(αn), (n → ∞). (5)
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