# An application of entire functions of exponential type in Banach algebras

Javad Mashreghi Université Laval

"The first joint work with Tom"

Complex Analysis and Spectral Theory Celebrating T. Ransford's 60th Birthday Université Laval May 21-25, 2018

Entire Functions of Exponential Type Polynomial Power Growth

Polynomial Power Growth Subexponential Power Growth Exponential power growth Elementary Properties Gleason–Kahane–Zelazko Result

### Туре

An entire function f is said to be of *exponential type* if it satisfies the growth restriction

$$|f(z)| \leq A e^{lpha |z|}, \qquad (z \in \mathbb{C}).$$

The *type* of *f* is

$$\sigma_f = \inf \alpha = \limsup_{z \to \infty} \frac{\log |f(z)|}{|z|}.$$

Attention: We might have  $\sigma_f = 0$ , e.g., for polynomials.

(日) (同) (日) (日)

Elementary Properties Gleason–Kahane–Zelazko Result

### Hadamard's Theorem (special case)

#### Theorem

Let f be an entire function of exponential type such that

$$f(z) \neq 0,$$
  $(z \in \mathbb{C}).$ 

Then there are constants  $\alpha, \beta \in \mathbb{C}$  such that

$$f(z) = e^{\alpha z + \beta}, \qquad (z \in \mathbb{C}).$$

Application of entire functions in Banach algebras

(日) (同) (日) (日)

Entire Functions of Exponential Type Polynomial Power Growth Subexponential Power Growth

Exponential power growth

Elementary Properties Gleason–Kahane–Zelazko Result

### A Uniqueness Result

Let p be a polynomial such that

$$|p(x)| \leq M, \qquad (x \in \mathbb{R}).$$

Then p is constant.

(日) (同) (日) (日)

э

Elementary Properties Gleason–Kahane–Zelazko Result

A Uniqueness Result (polynomials growth)

Let p be a polynomial such that

$$|p(x)| \leq M|x|^k$$
,  $(x \in \mathbb{R})$ .

Then p is a polynomial of degree at most k.

- 4 同 2 4 日 2 4 日

Polynomial Power Growth Subexponential Power Growth Exponential power growth Elementary Properties Gleason–Kahane–Zelazko Result

### A Uniqueness Result

#### Theorem

Let f be an entire function of exponential type zero such that

 $|f(x)| \leq M, \qquad (x \in \mathbb{R}).$ 

Then f is constant.

Polynomial Power Growth Subexponential Power Growth Exponential power growth Elementary Properties Gleason–Kahane–Zelazko Result

### A Uniqueness result

#### Corollary

Let f be an entire function of exponential type zero such that

$$f(x) = O(|x|^k), \qquad (x \to \pm \infty).$$

Then f is a polynomial of degree at most k.

(日) (同) (日) (日)

Elementary Properties Gleason–Kahane–Zelazko Result

### Maximal Ideal Space

Let  $\mathcal{A}$  be a Banach algebra. A nonzero linear functional  $\Lambda : \mathcal{A} \longrightarrow \mathbb{C}$  is said to be *multiplicative* if

$$\Lambda(\mathfrak{ab}) = \Lambda(\mathfrak{a})\Lambda(\mathfrak{b}), \qquad (\mathfrak{a}, \mathfrak{b} \in \mathcal{A}).$$

It is easy to see that ker( $\Lambda$ ) is a *maximal ideal* of  $\mathcal{A}$ . Moreover, given any maximal ideal M in  $\mathcal{A}$ , there is a unique nonzero multiplicative linear functional  $\Lambda$  such that ker( $\Lambda$ ) = M.

・ 同 ト ・ ヨ ト ・ ヨ ト

Polynomial Power Growth Subexponential Power Growth Exponential power growth Elementary Properties Gleason–Kahane–Zelazko Result

#### Theorem (Gleason–Kahane–Zelazko, 1968)

Let  $\mathcal{A}$  be a (commutative) Banach algebra. Let  $\Lambda : \mathcal{A} \longrightarrow \mathbb{C}$  be a nonzero bounded linear functional on  $\mathcal{A}$ . Then  $\Lambda$  is multiplicative if and only if

 $\Lambda(\mathfrak{a})\in Sp(\mathfrak{a})$ 

for all  $\mathfrak{a} \in \mathcal{A}$ .

Polynomial Power Growth Subexponential Power Growth Exponential power growth Elementary Properties Gleason–Kahane–Zelazko Result

#### Proof.

Easy direction: If  $\Lambda$  is multiplicative, then  $\Lambda(\mathfrak{e}) = 1$  and hence

$$\Lambda(\mathfrak{a} - \Lambda(\mathfrak{a})\mathfrak{e}) = 0.$$

Therefore,  $\mathfrak{a} - \Lambda(\mathfrak{a})\mathfrak{e}$  cannot be invertible, i.e.,  $\Lambda(\mathfrak{a}) \in Sp(\mathfrak{a})$ .

Polynomial Power Growth Subexponential Power Growth Exponential power growth Elementary Properties Gleason–Kahane–Zelazko Result

#### Proof.

Technical direction: Assume that  $\Lambda(\mathfrak{a}) \in Sp(\mathfrak{a})$  for all  $\mathfrak{a} \in \mathcal{A}$ . Our goal is to show that  $\Lambda$  is multiplicative.

Fix  $\mathfrak{a} \in \mathcal{A}$ , and define

$$f(z) = \Lambda(e^{\mathfrak{a} z}), \qquad (z \in \mathbb{C}).$$

Entire Functions of Exponential Type Polynomial Power Growth Subexponential Power Growth

Exponential power growth

Elementary Properties Gleason–Kahane–Zelazko Result

#### Proof.

- f is an entire function of exponential type.
- $f(0) = \Lambda(\mathfrak{e}) \in \mathsf{Sp}(\mathfrak{e}) = \{1\}$ . In short, f(0) = 1.
- $e^{az}$  is invertible in  $\mathcal{A}$ . In other words,  $0 \notin \text{Sp}(e^{az})$ . By the main assumption,  $\Lambda(e^{az}) \in \text{Sp}(e^{az})$ .

Therefore,

$$f(z) = \Lambda(e^{\mathfrak{a} z}) \neq 0, \qquad (z \in \mathbb{C}).$$

Application of entire functions in Banach algebras

イロト イポト イヨト イヨト

Elementary Properties Gleason–Kahane–Zelazko Result

#### Proof.

Hence, By Hadamard's theorem, there are constants  $\alpha,\beta\in\mathbb{C}$  such that

$$f(z) = \Lambda(e^{\mathfrak{a} z}) = e^{\alpha z + \beta}, \qquad (z \in \mathbb{C}).$$

Considering the Taylor coefficients of both sides, and that f(0) = 1, we deduce

$$\Lambda(\mathfrak{a}^n) = \alpha^n = (\Lambda(\mathfrak{a}))^n, \qquad (n \ge 1).$$

But, even  $\Lambda(\mathfrak{a}^2) = (\Lambda(\mathfrak{a}))^2$  is enough to ensure that  $\Lambda$  is multiplicative.

Nilpotent Elements

### Nilpotent Elements

#### Theorem (Allan, 1996)

Let  $\mathfrak{a}$  be an element of a unital Banach algebra, and let  $k \ge 0$ . Then

$$\|(1+\mathfrak{a})^n-(1-\mathfrak{a})^n\|=O(n^k),\qquad(n o\infty),$$

if and only if

$$\mathfrak{a}^{k+2} = 0$$
 (k odd) while  $\mathfrak{a}^{k+1} = 0$  (k even).

Application of entire functions in Banach algebras

#### Proof.

'Only if': Trivial.

'If': Let A be a continuous linear functional on the Banach algebra, and define  $f: \mathbb{C} \to \mathbb{C}$  by

$$f(z) = \Lambda(e^{\mathfrak{a} z} - e^{-\mathfrak{a} z}), \qquad (z \in \mathbb{C}).$$

Hence, f is an entire function of exponential type. The Taylor expansion of f is

$$f(z) = 2 \sum_{\substack{n \text{ odd} \\ n \ge 0}} \frac{\Lambda(\mathfrak{a}^n)}{n!} z^n.$$

Application of entire functions in Banach algebras

Nilpotent Elements

#### Proof.

#### Therefore, the type of f is estimated as

$$\sigma_f = \limsup_{\substack{n \text{ odd} \\ n \to \infty}} |\Lambda(\mathfrak{a}^n)|^{1/n} \le \limsup_{n \to \infty} \|\mathfrak{a}^n\|^{1/n} = r(\mathfrak{a}).$$

An very essential step is to show that

 $\sigma_f = 0.$ 

To do so, we show that  $r(\mathfrak{a}) = 0$ .

Application of entire functions in Banach algebras

イロト イポト イヨト イヨト

#### Proof.

Let  $\lambda \in \mathsf{Sp}(\mathfrak{a})$ . Thus,

$$(1+\lambda)^n-(1-\lambda)^n\in {\sf Sp}ig((1+\mathfrak{a})^n-(1-\mathfrak{a})^nig),\qquad (n\geq 1).$$

By assumption,

$$(1+\lambda)^n - (1-\lambda)^n = O(n^k), \qquad (n \to \infty).$$

Therefore,  $\lambda = 0$ , otherwise the left hand side has exponential growth. In short,  $r(\mathfrak{a}) = 0$ .

Nilpotent Elements

### Proof.

For  $x \ge 0$ ,

$$\begin{aligned} e^{x}|f(x)| &= |\Lambda(e^{x(1+\mathfrak{a})} - e^{x(1-\mathfrak{a})})| \\ &\leq ||\Lambda|| \sum_{n\geq 1} \frac{\|(1+\mathfrak{a})^n - (1-\mathfrak{a})^n\|}{n!} x^n \\ &\leq C \sum_{n\geq 1} \frac{n^k}{n!} x^n \\ &\leq C(1+x^k) e^x. \end{aligned}$$

Application of entire functions in Banach algebras

(日) (图) (문) (문) (문)

Nilpotent Elements

#### Proof.

Hence,

$$|f(x)| \le C(1+|x|^k), \qquad (x \ge 0).$$

#### As *f* is an odd function, the same inequality persists for all $x \in \mathbb{R}$ .

《口》 《聞》 《臣》 《臣》

Nilpotent Elements

#### Proof.

Therefore, by the uniqueness result,

$$f(z) = \Lambda(e^{\mathfrak{a} z} - e^{-\mathfrak{a} z})$$

must be a polynomial of degree at most k. Considering the Taylor coefficients of f, we deduce

$$\Lambda(\mathfrak{a}^{k+2})=0$$
 (k odd) while  $\Lambda(\mathfrak{a}^{k+1})=0$  (k even).

Since this holds for all functionals  $\Lambda$ , the result follows.

(日) (同) (日) (日)

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

### Subexponential Power Growth

Allan assumed that

$$\|(1+\mathfrak{a})^n-(1-\mathfrak{a})^n\|=O(n^k),\qquad (n o\infty).$$

What happens if we suppose that, for some  $ho \in (0,1)$ ,

$$\|(1+\mathfrak{a})^n-(1-\mathfrak{a})^n\|=O(e^{\varepsilon n^
ho}), \qquad (n o\infty, orall arepsilon>0)?$$

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

### Our Tool

Let  $(t_n)_{n\geq 1}$  be a sequence of positive real numbers with  $\sum 1/t_n < \infty$ . Then we exploit

$$w(z) = \prod_{n \ge 1} \left( 1 + \frac{z}{t_n} \right). \tag{1}$$

In particular, we need

$$w_{\alpha}(z) = \prod_{n \ge 1} \left( 1 + \frac{z}{(n - \frac{1}{2})^{\frac{1}{\alpha}}} \right), \qquad \alpha \in (0, 1).$$
 (2)

Application of entire functions in Banach algebras

イロト イポト イヨト イヨト

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

### Growth of $w_{\alpha}$

We know that

$$|w_{lpha}(iy)| \sim 2^{-rac{1}{2lpha}} \expig(\delta |y|^{lpha}ig), \qquad (y o \pm \infty),$$

#### and

$$w_{\alpha}(x) \sim 2^{-rac{1}{2lpha}} \exp\left(rac{\delta}{\cos(rac{\pilpha}{2})} x^{lpha}
ight), \qquad (x o +\infty),$$

where

$$\delta = \frac{\pi}{2\sin(\frac{\pi\alpha}{2})}.$$

Application of entire functions in Banach algebras

< ロ > < 回 > < 回 > < 回 > < 回 >

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

# A Phragmén-Lindelöf principle

#### Theorem

Let f be an entire function of type zero. Assume that

$$|f(iy)| \leq |w(iy)|, \qquad (y \in \mathbb{R}),$$

where w is defined as in (1). Then

$$|f(z)| \leq w(|z|), \qquad (z \in \mathbb{C}).$$

Application of entire functions in Banach algebras

(日) (同) (日) (日)

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

# A Phragmén-Lindelöf principle

### Corollary

Let f be an entire function of type zero. Assume that

$$|f(iy)| \leq C \exp(\delta |y|^{lpha}), \qquad (y \to \pm \infty).$$

Then

$$|f(z)| \leq C \exp\left\{rac{\delta}{\cos(\pi lpha/2)}|z|^lpha
ight\}, \qquad (z o\infty).$$

Application of entire functions in Banach algebras

《口》 《聞》 《臣》 《臣》

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

### JM–Ransford

(I)

(III)

#### Theorem (JM–Ransford, 2004)

Let  $\mathfrak{a}$  be an element of a unital Banach algebra, and let  $\rho \in (0,1)$ . Then the following are equivalent:

$$\|(1+\mathfrak{a})^n\|$$
 and  $\|(1-\mathfrak{a})^n\| = O(e^{\varepsilon n^{
ho}}), \qquad (n o \infty, \forall \varepsilon > 0).$  (II)

$$\|(1+\mathfrak{a})^n-(1-\mathfrak{a})^n\|=O(e^{\varepsilon n^{
ho}}), \qquad (n o\infty, \forall \varepsilon>0),$$

$$\lim_{n\to\infty}n^{\frac{1}{\rho}-1}\|\mathfrak{a}^n\|^{\frac{1}{n}}=0.$$

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

 $(I) \Longrightarrow (II)$ : Trivial.

 $(II) \Longrightarrow (III)$ : Fix  $\varepsilon > 0$ . Let  $\Lambda$  be a continuous linear functional on the Banach algebra, and define  $f : \mathbb{C} \to \mathbb{C}$  by

$$f(z) = \Lambda(e^{\mathfrak{a} z} - e^{-\mathfrak{a} z}), \qquad (z \in \mathbb{C}).$$

We know that f is an entire function of exponential type zero.

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

For  $x \ge 0$ ,

$$\begin{aligned} e^{x}|f(x)| &= |\Lambda(e^{x(1+\mathfrak{a})} - e^{x(1-\mathfrak{a})})| \\ &\leq \|\Lambda\|\sum_{n\geq 0} \frac{\|(1+\mathfrak{a})^n - (1-\mathfrak{a})^n\|}{n!} x^n \\ &\leq C\sum_{n\geq 0} \frac{e^{\varepsilon n^{\rho}}}{n!} x^n. \end{aligned}$$

Application of entire functions in Banach algebras

(日) (图) (문) (문) (문)

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

Since, for  $ho\in(0,1)$  and arepsilon>0,

$$\sum_{n\geq 0} \frac{e^{\varepsilon n^{\rho}}}{n!} x^n = O(e^{x+2\varepsilon x^{\rho}}), \qquad (x \to +\infty),$$

we deduce

$$|f(x)| \leq C e^{2\varepsilon |x|^{
ho}}, \qquad (x \geq 0).$$

As f is an odd function, the same inequality persists for all  $x \in \mathbb{R}$ .

イロト イポト イヨト イヨト

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

Hence, by the corollary, we have

$$|f(z)| \leq C \exp\left(\frac{2\varepsilon}{\cos(\frac{\pi\rho}{2})}|z|^{
ho}
ight), \qquad (z \in \mathbb{C}).$$
 (3)

Application of entire functions in Banach algebras

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

The Taylor expansion of f is

$$f(z) = 2 \sum_{\substack{n \text{ odd} \\ n > 0}} \frac{\Lambda(\mathfrak{a}^n)}{n!} z^n.$$

The Taylor coefficients can be estimated using the standard Cauchy estimates together with (3).

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

This yields

$$\frac{2|\Lambda(\mathfrak{a}^n)|}{n!} \leq \frac{C}{R^n} \, \exp\left(\frac{2\varepsilon}{\cos(\frac{\pi\rho}{2})} \, R^\rho\right), \qquad (n \text{ odd}, \ R>0).$$

The right-hand side is minimized when

$$\frac{2\varepsilon}{\cos(\frac{\pi\rho}{2})}\,\rho R^{\rho-1} - nR^{-1} = 0.$$

Application of entire functions in Banach algebras

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

This gives

$$\frac{2|\Lambda(\mathfrak{a}^n)|}{n!} \leq C\Big(\frac{2e\varepsilon\rho}{n\cos(\frac{\pi\rho}{2})}\Big)^{\frac{n}{\rho}}, \qquad (n \text{ odd}).$$

This is true for each  $\Lambda$  (with a constant C depending on  $\Lambda$ ).

《口》 《聞》 《臣》 《臣》

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

Magic: By the *uniform boundedness principle*, there exists a universal constant C such that

$$\frac{2\|\mathfrak{a}^n\|}{n!} \leq C\Big(\frac{2e\varepsilon\rho}{n\cos(\frac{\pi\rho}{2})}\Big)^{\frac{n}{\rho}}, \qquad (n \text{ odd})$$

Application of entire functions in Banach algebras

《口》 《聞》 《臣》 《臣》

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

Take *n*-th roots, let  $n \rightarrow \infty$  and use Stirling's formula to obtain

$$\limsup_{\substack{n \text{ odd} \\ n \to \infty}} n^{\frac{1}{\rho}-1} \|\mathfrak{a}^n\|^{1/n} \leq \frac{1}{e} \Big(\frac{2e\varepsilon\rho}{\cos(\frac{\pi\rho}{2})}\Big)^{\frac{1}{\rho}}.$$

Finally, as  $\varepsilon$  is arbitrary,

$$\lim_{\substack{n \text{ odd} \\ n \to \infty}} n^{\frac{1}{\rho} - 1} \|\mathfrak{a}^n\|^{1/n} = 0,$$

which is part (III).

Application of entire functions in Banach algebras

《口》 《聞》 《臣》 《臣》

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

 $(III) \Longrightarrow (I)$ : Given  $\varepsilon > 0$ , choose  $\delta > 0$  so that

$$\frac{(e\delta)^{\rho}}{e\rho} = \frac{\varepsilon}{2}.$$

As  $n^{\frac{1}{p}-1} \|\mathfrak{a}^n\|^{\frac{1}{n}} < \delta$  for all large enough *n*, using Stirling's formula again, there exists a constant *C* such that

$$\frac{\|\mathfrak{a}^n\|}{n!} \leq C \frac{(e\delta)^n}{n^{n/\rho}}, \qquad (n \geq 1).$$

Application of entire functions in Banach algebras

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

### Therefore,

$$egin{array}{rcl} (1\pm\mathfrak{a})^n \| &\leq& \displaystyle\sum_{k=0}^n inom{n}{k} \|\mathfrak{a}^k\| \ &\leq& \displaystyle 1+\sum_{k=1}^n n^k rac{\|\mathfrak{a}^k\|}{k!} \ &\leq& \displaystyle 1+C\sum_{k=1}^n rac{(ne\delta)^k}{k^{rac{k}{
ho}}} \end{array}$$

Application of entire functions in Banach algebras

(日) (图) (문) (문) (문)

The Question The Auxiliary Family  $g_{\alpha}$ Our Characterization

#### Proof.

#### By elementary calculus,

$$rac{A^k}{k^{rac{k}{
ho}}} \leq \exp(A^{rac{
ho}{e
ho}}),$$

for all A > 0 and  $k \ge 1$ . Hence,

$$\|(1\pm\mathfrak{a})^n\|\leq 1+Cn\exprac{(ne\delta)^
ho}{e
ho}=O(e^{arepsilon n^
ho}),\qquad(n o\infty),$$

which is part (I).

Application of entire functions in Banach algebras

The Conjecture An Affirmative Answer

#### Theorem (Chalendar–Kellay–Ransford, 2000)

Let a be an element of a unital Banach algebra, and let  $\alpha \in (0, \infty)$ and  $\beta \in (1, \infty)$  be such that  $\beta^2 - \alpha^2 = 1$ . Suppose that

$$\|(1+\mathfrak{a})^n\|$$
 and  $\|(1-\mathfrak{a})^n\| = O(\beta^n), \quad (n \to \infty).$ 

Then

$$\|\mathfrak{a}^n\| = O(\alpha^n \log n), \qquad (n \to \infty).$$

Application of entire functions in Banach algebras

The Conjecture An Affirmative Answer

#### Conjecture (Chalendar–Kellay–Ransford, 2000)

Let a be an element of a unital Banach algebra, and let  $\alpha \in (0, \infty)$ and  $\beta \in (1, \infty)$  be such that  $\beta^2 - \alpha^2 = 1$ . Suppose that

$$\|(1+\mathfrak{a})^n\|$$
 and  $\|(1-\mathfrak{a})^n\| = O(\beta^n), \quad (n \to \infty).$ 

Then

$$\|\mathfrak{a}^n\| = O(\alpha^n), \qquad (n \to \infty).$$

Application of entire functions in Banach algebras

The Conjecture An Affirmative Answer

### JM–Ransford

#### Theorem (JM–Ransford, 2005)

Let a be an element of a unital Banach algebra, and let  $\alpha \in (0, \infty)$ and  $\beta \in (1, \infty)$  be such that  $\beta^2 - \alpha^2 = 1$ . Then

$$\|(1+\mathfrak{a})^n\|$$
 and  $\|(1-\mathfrak{a})^n\| = O(\beta^n), \quad (n \to \infty),$  (4)

if and only if

$$\|\mathfrak{a}^n\| = O(\alpha^n), \qquad (n \to \infty). \tag{5}$$

Application of entire functions in Banach algebras

The Conjecture An Affirmative Answer

### References

- G. Allan, Sums of idempotents and a lemma of N. J. Kalton, Studia Math. 121 (1996), 185–191.
- I. Chalendar, K. Kellay, T. Ransford, *Binomial sums, moments and invariant subspaces*, Israel J. Math. 115 (2000), 303–320.
- J. Mashreghi and T. Ransford, *Using entire functions to analyse power growth*, Contemp. Math. 263 (2004), 235–240.
- J. Mashreghi and T. Ransford, *Binomial sums and functions of exponential type*, Bull. London Math. Soc., 37 (2005), 15–24.

The Conjecture An Affirmative Answer



CMS Summer Meeting, Fredericton, 2003

Application of entire functions in Banach algebras

<ロ> <四> <四> <日> <日> <日</p>

The Conjecture An Affirmative Answer



Application of entire functions in Banach algebras

< ロ > < 回 > < 回 > < 回 > < 回 >