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Part I: Approximation by holomorphic polynomials

Let Pn denote the space of holomorphic polynomials of degree at
most n in Cd , d ≥ 1. Let f be a continuous complex-valued
function on a compact set K ⊂ Cd . Let

K̂ := {z ∈ Cd : |p(z)| ≤ ||p||K = max
ζ∈K
|p(ζ)|, all p ∈ ∪nPn}.

Theorem

(Oka-Weil) If K = K̂ , then any f holomorphic on a neighborhood
of K can be approximated uniformly on K by holomorphic
polynomials.

For d = 1, K = K̂ if and only if K has connected complement
(non-example: K = T := {z : |z | = 1}) and this is a version of
Runge’s theorem.
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Sketch of Oka-Weil: Oka’s proof

Let f be holomorphic on a neighborhood U of K ⊂ Cd (i.e.,
f : U → C is holomorphic in each variable separately).

1 If K = K̂ ⊂ ∆d := {z : |zj | < 1, j = 1, ..., d}, can
approximate K by polynomial polyhedron:

Π = {z : |zj | ≤ 1, j = 1, ..., d , |pk(z)| ≤ 1, k = 1, ..., l},

pk polynomials; i.e., K ⊂ Π ⊂ U.

2 “Lift” problem to ∆d+l ⊂ Cd+l : we consider
z → (z , p1(z), ..., pl(z)), i.e., the graph of (p1, ..., pl). Using
elementary ∂̄−theory on polynomial polyhedra, get F
holomorphic in neighborhood of ∆d+l with
F (z , p1(z), ..., pl(z)) = f (z), z ∈ Π (Oka extension theorem).

3 Expand F in Taylor series and truncate.

Note: Runge and Oka-Weil are not quantitative.
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Quantitative Runge and Oka-Weil: Bernstein-Walsh

A result quantifying the Runge and Oka-Weil theorems is the
Bernstein-Walsh theorem. The key tool is an extremal function:

VK (z) := sup{u(z) : u ∈ L(Cd), u ≤ 0 on K}

= max[0, sup{ 1

deg(p)
log |p(z)| : ||p||K := max

ζ∈K
|p(ζ)| ≤ 1}]

where L(Cd) := {u ∈ PSH(Cd) : u(z)− log |z | = 0(1), |z | → ∞}
and p ∈ ∪nPn. Here K ⊂ Cd is compact. For pn ∈ Pn,

|pn(z)| ≤ ||pn||K exp(nVK (z)), z ∈ Cd . (BW )

1 K = {z : |z − a| ≤ r}: VK (z) = log+ |z−a|
r := max[0, log |z−a|r ]

et |pn(z)| ≤ ||pn||K · |z − a|n pour |z − a| > r .

2 K = [−1, 1] ⊂ C: VK (z) = log |z +
√
z2 − 1|.
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Bernstein-Walsh

For a continuous complex-valued function f on K , let

Dn(f ,K ) := inf{||f − pn||K : pn ∈ Pn}.

Theorem

Let K ⊂ Cd (d ≥ 1) be compact with VK continuous. Let R > 1,
and let ΩR := {z : VK (z) < logR}. Let f be continuous on K.
Then

lim sup
n→∞

Dn(f ,K )1/n ≤ 1/R

if and only if f is the restriction to K of F holomorphic in ΩR .

Multivariate polynomial approximation and convex bodies



Easy direction: lim supn→∞D
1/n
n ≤ 1/R for some R > 1

To show f extends hol. to ΩR , take pn with Dn = ||f − pn||K .
Claim: p0 +

∑∞
1 (pn − pn−1) converges locally uniformly on ΩR to

a holomorphic function F which agrees with f on K .
Proof: Fix R ′ with 1 < R ′ < R; by hypothesis ||f − pn||K ≤ M

R′n for
some M > 0. Fix 1 < ρ < R ′, and apply (BW) to the polynomial
pn − pn−1 ∈ Pn on Ω̄ρ to obtain

sup
Ω̄ρ

|pn(z)− pn−1(z)| ≤ ρn||pn − pn−1||K

≤ ρn(||pn − f ||K + ||f − pn−1||K ) ≤ ρnM(1 + R ′)

R ′n
.

Since ρ and R ′ were arbitrary with 1 < ρ < R ′ < R,
p0 +

∑∞
1 (pn − pn−1) converges locally uniformly on ΩR to a

holomorphic function F . Converse requires (pluri-)potential theory.
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Converse proof of BW in C using polynomial interpolation

Let Γ ⊂ C be a rectifiable Jordan curve with z1, ..., zn inside Γ, and
let f be holomorphic inside and on Γ. Let Ln−1(z) be the Lagrange
interpolating polynomial (LIP) associated to f , z1, ..., zn:
Ln−1 ∈ Pn−1 and Ln−1(zj) = f (zj), j = 1, ..., n.

Proposition

(Hermite Remainder Formula) For any z inside Γ,

f (z)− Ln−1(z) =
1

2πi

∫
Γ

ωn(z)

ωn(t)

f (t)

(t − z)
dt,

where ωn(z) =
∏n

k=1(z − zk).

Take z
(n)
1 , ..., z

(n)
n Fekete points of order n − 1 for K : ωn satisfies

1

n
log
( |ωn(z)|
||ωn||K

)
→ VK (z) loc. unif. in C \ K̂ .

For f holomorphic in ΩR take LIP’s for f , z
(n)
1 , ..., z

(n)
n ; Γ ≈ ∂ΩR .
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Remarks on a converse proof in Cd , d > 1 (Siciak/Bloom)

Step 1: Let bn =dimPn and Q1, ...,Qbn be a basis for Pn. Define

DR := {z ∈ Cd : |Qj(z)| < Rn, j = 1, ..., bn}.

Proposition

Let f be holomorphic in a neighborhood of D̄R . Then for each
positive integer m, there exists Gm ∈ Pm such that for all ρ ≤ R,

||f − Gm||D̄ρ
≤ B(ρ/R)m

where B is a constant independent of m.

Proof: Use a version of “lifting” result of Oka. Let S : Cd → Cbn

via S(z) := (Q1(z), ...,Qbn(z)). Then S(Cd) is a subvariety of Cbn

and S(DR) is a subvariety of the polydisk

∆R := {ζ ∈ Cbn : |ζj | < Rn, j = 1, ..., bn}.
Oka: Get F holomorphic in ∆R ⊂ Cbn with F ◦ S = f on DR .
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Remarks, cont’d

Step 2: Construct polynomials Q1, ...,Qbn so that for n large the
sets DR approximate the sublevel sets ΩR of VK (for 0 < R1 < R,
there exists n0 such that for all n ≥ n0, DR1 ⊂ Ω̄R ⊂ D̄R). We use

Fekete points {z(n)
j } of order n for K to construct fundamental

Lagrange interpolating polynomials Qj := l
(n)
j ∈ Pn; so

l
(n)
j (z

(n)
k ) = δjk and ||l (n)

j ||K = 1. More later ...
Step 3: For any R ′ < R the Lagrange interpolating polynomials
Ln(f ) for f associated with a Fekete array for K satisfy

||f − Ln(f )||K ≤ B/(R ′)n

where B is a constant independent of n.
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Part 2: What is degree of a polynomial in Cd , d > 1?

Above, the degree of a polynomial is its total degree; i.e., if

p(z) =
∑

cαz
α, cα ∈ C, zα = zα1

1 · · · z
αd
d ,

the total degree of p is its maximal l1−degree:

max{|α| := α1 + · · ·+ αd : cα 6= 0}.

Trefethen (PAMS, 2017) considered Dn(f ,K ) for l1−degree (total
degree), l2−degree (Euclidean degree) or l∞-degree (max degree).
He compared these three (numerically) for K = [−1, 1]d and f a
multivariate Runge-type function, e.g.,

f (z) :=
1

r2 +
∑d

j=1 z
2
j

, r > 0.

This f is holomorphic in a neighborhood of K in Cd . We explain
exactly his numerical conclusions.
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The right framework

Fix a convex body P ⊂ (R+)d ; i.e., P is compact, convex and
Po 6= ∅ (e.g., P is a non-degenerate convex polytope, i.e., the
convex hull of a finite subset of (Z+)d in (R+)d with nonempty
interior). We consider the finite-dimensional polynomial spaces

Poly(nP) := {p(z) =
∑

J∈nP∩(Z+)d

cJz
J : cJ ∈ C}

for n = 1, 2, ... where zJ = z j11 · · · z
jd
d for J = (j1, ..., jd). We let bn

be the dimension of Poly(nP). For P = Σ where

Σ := {(x1, ..., xd) ∈ Rd : 0 ≤ xi ≤ 1,
d∑

j=1

xi ≤ 1},

we have Poly(nΣ) = Pn, the usual space of holomorphic
polynomials of degree at most n in Cd . We assume that Σ ⊂ kP
for some k ∈ Z+: note 0 ∈ P so Poly(nP) are linear spaces.
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Convexity and remark on degree

Convexity of P implies that

pn ∈ Poly(nP), pm ∈ Poly(mP)⇒ pn · pm ∈ Poly((n + m)P).

We may define an associated “norm” for x = (x1, ..., xd) ∈ Rd
+ via

‖x‖P := inf
λ>0
{x ∈ λP}

and define a general degree of a polynomial p(z) =
∑

α∈Zd
+
aαz

α

associated to the convex body P as

degP(p) := max
aα 6=0

‖α‖P .

Then Poly(nP) = {p : degP(p) ≤ n}.
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Trefethen degree: PAMS, 2017

For q ≥ 1, if we let

Pq := {(x1, ..., xd) : x1, ..., xd ≥ 0, xq1 + · · ·+ xqd ≤ 1}

be the (R+)d portion of an `q ball then we have, in Trefethen’s
notation (on the left),

dT (p) := degP1
(p) (total degree);

dE (p) := degP2
(p) (Euclidean degree);

dmax(p) := degP∞(p) (max degree).

Example

p(z1, z2) = z2
1 z

3
2 has degP1

(p) = 5; degP2
(p) =

√
13;

degP∞(p) = 3 so p ∈ Poly(5P1) ∩ Poly(4P2) ∩ Poly(3P∞).

We fix a convex body P ⊂ (R+)d with Σ ⊂ kP for some k ∈ Z+.
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Bernstein-Walsh, revisited

For K ⊂ Cd compact and “nonpluripolar” and f continuous on K ,

VP,K (z) := lim
n→∞

[
sup{1

n
log |pn(z)| : pn ∈ Poly(nP), ||pn||K ≤ 1}

]
and Dn(f ,P,K ) := inf{||f − pn||K : pn ∈ Poly(nP)}.

Theorem

(Bos-L.) Let K be compact with VP,K continuous. Let R > 1 and

ΩR := ΩR(P,K ) = {z : VP,K (z) < logR}.

Let f be continuous on K. Then

lim sup
n→∞

Dn(f ,P,K )1/n ≤ 1/R.

if and only if f is the restriction to K of F holomorphic in ΩR .
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The proof that lim supn→∞Dn(f ,P,K )1/n ≤ 1/R implies f is the
restriction to K of a function holomorphic in ΩR works exactly as
before. For the converse direction, the proof is a modification of
the case P = Σ:

1 use a version of the “lifting” result of Oka on DR−sets

2 construct basis {Qj} for Poly(nP) so DR approximate ΩR

3 Use Lagrange interpolating polynomials Ln(f ) for f at
P−Fekete points of K .

Remark: The “true” definition of VP,K will be given later.

We will give some examples first and discuss P−Fekete points
(and more general P−pluripotential theory) later.
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Examples: VP,K for product sets

For P ⊂ Rd a convex body, the indicator function is

φP(x1, ..., xd) := sup
(y1,...,yd )∈P

(x1y1 + · · · xdyd).

Proposition

Let E1, ...,Ed ⊂ C be compact with VEj
continuous. Then

VP,E1×···×Ed
(z1, ..., zd) = φP(VE1(z1), ...,VEd

(zd)).

We use a global domination principle (TBD later). In particular,
for K = T d = {(z1, ..., zd) : |z1| = · · · = |zd | = 1}, the unit
d−torus in Cd ,

VP,T d (z) = HP(z) := max
J∈P

log |zJ | = φP(log+ |z1|, ..., log+ |zd |)

(logarithmic indicator function of P). Here |zJ | := |z1|j1 · · · |zd |jd .
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Trefethen Runge-type example

Let 1/q′ + 1/q = 1 so φPq(x) = ||x ||`q′ . If E1, ...,Ed ⊂ C,

VPq ,E1×···×Ed
(z1, ..., zd) = ‖[VE1(z1),VE2(z2), · · ·VEd

(zd)]‖`q′
= [VE1(z1)q

′
+ · · ·+ VEd

(zd)q
′
]1/q

′
.

For the particular product set, K := [−1, 1]d where Ej = [−1, 1]
for j = 1, ..., d , that Trefethen considers,

VEj
(zj) = log |zj +

√
z2
j − 1| and hence we have for q > 1

VPq ,[−1,1]d (z1, ..., zd) =


d∑

j=1

(
log
∣∣∣zj +

√
z2
j − 1

∣∣∣)q′


1/q′

.

For f (z) := 1
r2+z2

1 +···+z2
d

and K = [−1, 1]d , f is holomorphic

except on its singular set S = {z ∈ Cd :
∑d

j=1 z
2
j = −r2}, an

algebraic variety having no real points.
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Trefethen Runge-type example, cont’d

Note VP1,[−1,1]d (z1, ..., zd) = maxj=1,...,d log |zj +
√

z2
j − 1|. By the

theorem, the Dn(f ,P,K ) decay like 1
Rn where

R = R(P,K ) := sup{R ′ > 0 : ΩR′ ∩ S = ∅}.

Clearly log(R(P,K )) = minz∈S VP,K (z). We show (Bos.-L):

R(P1,K ) = r/
√
d +

√
1 + r2/d

< r +
√

1 + r2 = R(P2,K ) = R(P∞,K ) (indep. of d!).

Thus the approximation order of the Euclidean degree is
considerably higher than for the total degree, while the use of max
degree provides no additional advantage, as reported by Trefethen.
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Unfair!

This is not fair: the dimensions of {p : degP(p) ≤ n} are
proportional (asymptotically) to the volume vold(P):

dim({p : degP(p) ≤ n}) = dim(Poly(nP)) � vold(P) · nd .

To equalize their dimensions we scale Pq by

c = c(q) =

(
vold(P1)

vold(Pq)

)1/d

and observe that R(cP,K ) = (R(P,K ))c . For d = 2 we compare

R(P1,K ) = r/
√

2 +
√

1 + r2/2, R(P2,K )c(2) =
(
r +

√
1 + r2

)√2/π
.

We have R(P2,K )c(2) > R(P1,K ) for “small” r (r < 2.1090 · · · );
so Euclidean degree, even normalized, has a better approximation
order than the total degree case, but now with a lesser advantage.
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Conclusion and questions

The bottom line is: the Bernstein-Walsh type theorem shows that
the geometry of the singularities of the approximated function f –
provided f is, indeed, holomorphic on a neighborhood of K ! –
relative to the sublevel sets of the P−extremal function VP,K

govern the asymptotics of the sequence {Dn(f ,P,K )} and hence
the number R(P,K ) (which we should write as R(P,K , f )).

Given K ,P, f , let ΩR(P,K) := {z : VP,K (z) < logR(P,K )} where

lim supn→∞Dn(f ,P,K )1/n = 1/R(P,K ). Questions:

1 Given K , f find the “best” P (with equalized dim(Poly(nP)))
so that R(P,K ) is largest.

2 If lim supn→∞Dn(f ,K )1/n = lim supn→∞Dn(g ,K )1/n = 1/R,
then f , g are holomorphic in ΩR = {z : VK (z) < logR}
(classical Bernstein-Walsh). Which is “better”?
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Example

Example

In C, let K = {z : |z | ≤ 1/R}. Then f (z) = 1
z−1 is “better” than

g(z) =
∑

zn! as holomorphic functions in the unit disk ΩR .

We can’t “detect” this, but in Cd , d > 1, given K , f , we can
compute ΩR(P,K) for various convex bodies P to get a better
picture of the true “region of holomorphicity” of f : it contains
∪PΩR(P,K). For “real” theory, we can look, e.g., at traces

ΩR(P,K) ∩ Rd for f real-analytic on a neighborhood of K ⊂ Rd .

We return to the proof of the “hard” direction of the theorem: to
show that f holomorphic in ΩR = {z : VP,K (z) < logR} implies

lim sup
n→∞

Dn(f ,P,K )1/n ≤ 1/R.
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Sketch of proof

Step 1: Let bn =dimPoly(nP). Let Q1, ...,Qbn be a basis for
Poly(nP). Define

DR := {z ∈ Cd : |Qj(z)| < Rn, j = 1, ...,bn}.

Proposition

Let f be holomorphic in a neighborhood of D̄R . Then for each
positive integer m, there exists Gm ∈ Poly(mP) such that for all
ρ ≤ R,

||f − Gm||D̄ρ
≤ B(ρ/R)m

where B is a constant independent of m.

Proof follows P = Σ case and requires S : Cd → Cbn via
S(z) := (Q1(z), ...,Qbn(z)) be one-to-one on D̄R (follows for
n ≥ k where Σ ⊂ kP).
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Sketch of proof, continued

Step 2: Construct polynomials Q1, ...,Qbn so that for n large the
sets DR approximate the sublevel sets ΩR of VP,K ; i.e., given
0 < R1 < R, there exists n0 such that for all n ≥ n0, DR1 ⊂ Ω̄R .
Use P−Fekete points and fundamental Lagrange interpolating
polynomials to construct Qj . Here
VP,K (z) = limn→∞

1
n log ΦP,n(z) where

ΦP,n(z) := sup{|pn(z)| : pn ∈ Poly(nP), ||pn||K ≤ 1} and if
VP,K (z) is continuous, the convergence is locally uniform on Cd .

Step 3: For any R ′ < R the Lagrange interpolating polynomials
Ln(f ) for f associated with a P−Fekete array for K satisfy

||f − Ln(f )||K ≤ B/(R ′)n

where B is a constant independent of n.
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Part 3: P−extremal functions in Cd

We briefly describe some basics of the “P− pluripotential theory.”
Associated to P ⊂ (R+)d a convex body, recall we have the
logarithmic indicator function on Cd

HP(z) := sup
J∈P

log |zJ | := sup
J∈P

log[|z1|j1 · · · |zd |jd ];

LP = LP(Cd) := {u ∈ PSH(Cd) : u(z)−HP(z) = 0(1), |z | → ∞}.
For p ∈ Poly(nP), n ≥ 1 we have 1

n log |p| ∈ LP . Given K ⊂ Cd ,
the P−extremal function of K is VP,K (z) where the a priori
definition of VP,K is

VP,K (z) := sup{u(z) : u ∈ LP(Cd), u ≤ 0 on K}.

This is a Perron-Bremmerman family:(ddcVP,K )d = 0 outside K .
Example: K = T d , the unit d−torus in Cd . Then

VP,T d (z) = HP(z) = sup
J∈P

log |zJ |.
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Example: VP,T d (z) = HP(z) = supJ∈P log |zJ |

Here, (ddcVP,T d )d = d!Vol(P)
(2π)d

dθ1 · · · dθd is the Monge-Ampère

measure of VP,T d . For a C 2−function u on Cd ,

(ddcu)d = ddcu ∧ · · · ∧ ddcu = cd det[
∂2u

∂zj∂z̄k
]j ,kdV

where dV = ( i
2 )d
∑d

j=1 dzj ∧ dz̄j is the volume form on Cd and cd
is a dimensional constant. Here,

ddcu = 2i
n∑

j ,k=1

∂2u

∂zj∂z̄k
dzj ∧ dz̄k = ∆u · dV in C.

If u locally bounded psh (ddcu)d well-defined as positive measure.
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P−extremal functions and P = Σ case

Using Hörmander L2 − ∂̄− theory, T. Bayraktar showed:

Theorem

(T. Bayraktar) We have

VP,K (z) = lim
n→∞

[
sup{1

n
log |pn(z)| : pn ∈ Poly(nP), ||pn||K ≤ 1}

]
.

This is the starting point to develop a P−pluripotential theory. For

P = Σ = {(x1, ..., xd) ∈ Rd : 0 ≤ xi ≤ 1,
d∑

j=1

xi ≤ 1},

Poly(nΣ) = Pn, and we recover “classical” pluripotential theory:

HΣ(z) = max[0, log |z1|, ..., log |zd |] = max[log+ |z1|, ..., log+ |zd |]

and LΣ = L; VΣ,K = VK .

Multivariate polynomial approximation and convex bodies



Remark: Global Domination Principle

We have L+
P := {u ∈ LP : u(z) ≥ HP(z) + cu}. We call

uP ∈ PSH(Cd) a strictly psh P−potential if

1 uP ∈ L+
P is strictly psh and

2 there exists C such that |uP(z)− HP(z)| ≤ C for all z ∈ Cd .

We have existence of uP which may replace HP :

LP = {u ∈ PSH(Cd) : u(z)− uP(z) = 0(1), |z | → ∞}

and
L+
P = {u ∈ LP : u(z) ≥ uP(z) + cu}.

Using uP we can prove a global domination principle:

Theorem

Let u ∈ LP and v ∈ L+
P with u ≤ v a.e. (ddcv)d . Then u ≤ v in

Cd .
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Discretization

Recall bn is the dimension of Poly(nP). We can write

Poly(nP) = span{e1, ..., ebn}

where {ej(z) := zα(j)}j=1,...,bn are the standard basis monomials.
The ordering is unimportant. For points ζ1, ..., ζbn ∈ Cd , let

VDMP
n (ζ1, ..., ζbn) := det[ei (ζj)]i ,j=1,...,bn (1)

= det

 e1(ζ1) e1(ζ2) . . . e1(ζbn)
...

...
. . .

...
ebn(ζ1) ebn(ζ2) . . . ebn(ζbn)

 .
For K ⊂ Cd compact, P−Fekete points of order n maximize
|VDMP

n (ζ1, ..., ζbn)| over ζ1, ..., ζbn ∈ K . Let ln :=
∑bn

j=1 deg(ej).
Then (nontrivial!) the limit

δ(K ,P) := lim
n→∞

max
ζ1,...,ζbn∈K

|VDMP
n (ζ1, ..., ζbn)|1/ln exists.
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Asymptotic P−Fekete arrays and (dd cVP,K )d

Theorem

Let K ⊂ Cd be compact. For each n, take points

z
(n)
1 , z

(n)
2 , · · · , z(n)

bn
∈ K for which

lim
n→∞

|VDMP
n (z

(n)
1 , · · · , z(n)

bn
)|

1
ln = δ(K ,P)

(asymptotic P−Fekete arrays) and let µn := 1
bn

∑bn
j=1 δz(n)

j

. Then

µn →
1

d!Vol(P)
(ddcVP,K )d weak− ∗.

The proof of these results rely on techniques from Berman and
Boucksom, Invent. Math., (2010) and involve weighted notions of
VP,K and δ(K ,P). See Bayraktar, Bloom, L., Pluripotential
Theory and Convex Bodies. Remark: (ddcVP,K )d is the “target”
for zeros of random polynomial mappings – and our motivation.

Multivariate polynomial approximation and convex bodies



Questions: product sets

Recall

VP,E1×···×Ed
(z1, ..., zd) = φP(VE1(z1), ...,VEd

(zd)).

For T d = {(z1, ..., zd) : |zj | = 1, j = 1, ..., d} and 1 ≤ q ≤ ∞,
(ddcVPq ,T d )d is a multiple of Haar measure on T d and for

[−1, 1]d ,

VPq ,[−1,1]d (z1, ..., zd) =


d∑

j=1

(
log
∣∣∣zj +

√
z2
j − 1

∣∣∣)q′


1/q′

.

1 Is supp (ddcVPq ,[−1,1]d )d = [−1, 1]d always?

2 More generally, what can one say about
supp(ddcVPq ,E1×···×Ed

)d for 1 < q <∞?
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Other sets: the complex Euclidean ball in C2

For K = B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 ≤ 1} and P = P∞, we
have shown:

VP∞,B2(z) =


1
2

{
log(|z2|2)− log(1− |z1|2)

}
|z1|2 ≤ 1/2, |z2|2 ≥ 1/2

1
2

{
log(|z1|2)− log(1− |z2|2)

}
|z1|2 ≥ 1/2, |z2|2 ≤ 1/2

log |z1|+ log |z2|+ log(2) |z1|2 ≥ 1/2, |z2|2 ≥ 1/2.

Thus the measure (ddcV ∗P∞,B2
)2 is Haar measure on the torus

{|z1| = 1/
√

2, |z2| = 1/
√

2} (with total mass 2). On the other
hand, it is well known that (ddcV ∗P1,B2

)2 is normalized surface

measure on ∂B2. What can we say about supp(ddcV ∗Pq ,B2
)2 for

1 < q <∞? What is V ∗Pq ,B2
?
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A final question ... from numerical analysis

What can one say if P is not convex? For example, let

Pq := {(x1, ..., xd) : x1, ..., xd ≥ 0, xq1 + · · ·+ xqd ≤ 1},

for 0 < q < 1. Is there a Bernstein-Walsh theorem? Even for
“q = 0”:

P0 := ∪dj=1{(x1, ..., xd) : 0 ≤ xj ≤ 1, xk = 0, k 6= j}.

Let K = [−1, 1]2 ⊂ R2 ⊂ C2 and f (z ,w) = g(z) + h(w), g , h
holomorphic in a neighborhood of [−1, 1]. Here one should only
use polynomials of the form p(z) + q(w) and thus

Dn(f ,Pq,K ) = Dn(f ,P1,K ), 0 ≤ q ≤ 1.

What is the “true” extremal function VP,K?
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CONGRATULATIONS
to TOM !!!

THANK YOU ALL !!!
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