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@ Part I: Approximation by holomorphic polynomials in CY;
Oka-Weil and Bernstein-Walsh

@ Part 2: What is degree of a polynomial in C9, d > 17?
Bernstein-Walsh, revisited

© Part 3. P—extremal functions in C? (P a convex body in
(R*)9)
Mostly joint work with L. Bos; based on joint work with T.
Bayraktar and T. Bloom.
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Part |: Approximation by holomorphic polynomials

Let P, denote the space of holomorphic polynomials of degree at
most nin C¢, d > 1. Let f be a continuous complex-valued
function on a compact set K C C9. Let

R i={z €€ 1p(2)| < [lpllx = max|p(C)]. all p € UnPo}.

(Oka-Weil) If K = K, then any f holomorphic on a neighborhood
of K can be approximated uniformly on K by holomorphic
polynomials.

Ford=1, K=K if and only if K has connected complement
(non-example: K = T :={z:|z| = 1}) and this is a version of
Runge's theorem.
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Sketch of Oka-Weil: Oka's proof

Let f be holomorphic on a neighborhood U of K  C¢ (i.e.,
f : U — C is holomorphic in each variable separately).
Q@ fK=KcA?:={z:|z/<1, j=1,..,d} can
approximate K by polynomial polyhedron:

M={z:|z| <1, j=1,....d, |p(2)| £1, k=1,...,1},

px polynomials; i.e., K C 1 C U.
@ ‘“Lift" problem to A9t ¢ CI*/: we consider
z — (z,pi(2), ..., pi(2)), i.e., the graph of (p1,..., p;). Using

elementary d—theory on polynomial polyhedra, get F

holomorphic in neighborhood of A4*! with

F(z,pi(z),...,pi(z)) = f(z), z € M (Oka extension theorem).
© Expand F in Taylor series and truncate.

Note: Runge and Oka-Weil are not quantitative.
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Quantitative Runge and Oka-Weil: Bernstein-Walsh

A result quantifying the Runge and Oka-Weil theorems is the
Bernstein-Walsh theorem. The key tool is an extremal function:

Vi(z) :==sup{u(z) : u e L(C?), u<0on K}

= man{0, sup{ s 1og |o(2) < el = ma ()] < 1)

where L(CY) := {u € PSH(CY) : u(z) — log |z| = 0(1), |z| — oo}
and p € U,P,. Here K C C? is compact. For p, € P,

[Pa(2)] < ||Pallk exp(nVi(2)), z € C. (BW)

Q@ K={z:|z—a| <r}: Vk(z)=log™" |Z 2l .= max[0, log == a‘]
et [a(2)] < lIpnllic |2 — a|" pour |z a| > .

Q@ K=[-1,1] c C: Vk(z) =logl|z+ vz? —1].



Bernstein-Walsh

For a continuous complex-valued function f on K, let

Dn(f, K) := inf{||f — pnl|k : pn € Pn}.

Theorem

Let K ¢ C? (d > 1) be compact with Vi continuous. Let R > 1,
and let Qr := {z : Vk(z) <log R}. Let f be continuous on K.
Then

limsup Dn(f, K)Y/" < 1/R

n—o0

if and only if f is the restriction to K of F holomorphic in Qg.
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Easy direction: limsup, .. DL < 1/R for some R > 1

To show f extends hol. to Qg, take p, with D, = ||f — pnl|k-
Claim: po + > _7°(Pn — Pn—1) converges locally uniformly on Qg to
a holomorphic function F which agrees with f on K.

Proof. Fix R' with 1 < R' < R; by hypothesis ||f — pp||[x < A for
some M > 0. Fix 1 < p < R’, and apply (BW) to the polynomial
Pn — Pn—1 € Ppon Qp to obtain

sup |pn(z) = pn-1(2)| < p"|lpn — Pn-1llk

QP

M(1+ R')
—
Since p and R’ were arbitrary with 1 < p < R’ < R,

po+ .1 (Pn — Pn—1) converges locally uniformly on Qg to a
holomorphic function F. Converse requires (pluri-)potential theory.

< 0"(llpn = fllk + If = pPa-1llk) < p"
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Converse proof of BW in C using polynomial interpolation

Let ' C C be a rectifiable Jordan curve with zi, ..., z, inside I, and
let £ be holomorphic inside and on I'. Let L,_1(z) be the Lagrange
interpolating polynomial (LIP) associated to f, zy, ..., z:

Ln—1 € Pp—1 and Lo_1(zj)) = f(z), j=1,....n.

Proposition

(Hermite Remainder Formula) For any z inside T,

F(2) = Loa(2) = —— /r wnlz) 18 g

270 Jr wa(t) (t — 2)

where wy(z) = [1}_1(z — zk).

Take z§"), ...,z,(,n) Fekete points of order n — 1 for K: w,, satisfies

1 |og( |wn(2)]

— Vk(z2) loc. unif. in C K.
2 o8 (i) = V@) \

. . y n n Is
For f holomorphic in Qg take LIP's for f,z£ ), ...,z,(7 ); [~ 00R.



Remarks on a converse proof in C?, d > 1 (Siciak/Bloom)

Step 1. Let b, =dimP, and Qq, ..., Qp, be a basis for P,. Define
Drp:={zcC?:|Qi2) <R", j=1,..,by}.

Proposition

Let f be holomorphic in a neighborhood of Dg. Then for each
positive integer m, there exists G, € Pp, such that for all p < R,

If = Gmllp, < B(p/R)™

where B is a constant independent of m.

Proof. Use a version of “lifting” result of Oka. Let S : C? — Cb»
via S(z) = (@1(2), ..., Qp,(2)). Then S(CY) is a subvariety of CP»
and S(DR) is a subvariety of the polydisk

Ag:={CeCl || <R" j=1,..,b,}.

Oka: Get F holomorphic in Ag C CP» with Fo S = f on Dg.



Remarks, cont'd

Step 2: Construct polynomials Qq, ..., Qp, so that for n large the
sets Dr approximate the sublevel sets Qg of Vi (for 0 < R; < R,
there exists ng such that for all n > ng, Dg, C Qg C Dgr). We use

Fekete points {zj(")} of order n for K to construct fundamental
Lagrange interpolating polynomials Q; := /j(”) € Py so
/J.(n)(z,((")) = d0jx and Hlj(n)HK = 1. More later ...
Step 3: For any R’ < R the Lagrange interpolating polynomials
L,(f) for f associated with a Fekete array for K satisfy

If = La(F)llk < B/(R)"

where B is a constant independent of n.
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Part 2: What is degree of a polynomial in C9, d > 17

Above, the degree of a polynomial is its total degree; i.e., if
p(z) = anza, ca€C, 2%=2"-- 2,
the total degree of p is its maximal /*—degree:
max{|a| == a1+ -+ aqg: cy # 0}.

Trefethen (PAMS, 2017) considered D,(f, K) for /' —degree (total
degree), I>—degree (Euclidean degree) or /°°-degree (max degree).
He compared these three (numerically) for K = [-1,1]? and f a
multivariate Runge-type function, e.g.,

1
2 d 2’
r ‘1’2]:12]

This f is holomorphic in a neighborhood of K in C¢. We explain
exactly his numerical conclusions.
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The right framework

Fix a convex body P C (R+)d,' i.e., P is compact, convex and
P° +# () (e.g., P is a non-degenerate convex polytope, i.e., the
convex hull of a finite subset of (ZT)? in (R*)? with nonempty
interior). We consider the finite-dimensional polynomial spaces

Poly(nP) := {p(z) = Z iz’ icyeC}

JenPN(Z+)d

for n=1,2,... where z/ = z{l x 'zéd for J = (j1,...,Jq)- We let by
be the dimension of Poly(nP). For P = ¥ where

d
Y o={(x1,....,xq) ER?:0< x; < 1, ZX,‘ <1},
=1

we have Poly(nX) = P, the usual space of holomorphic
polynomials of degree at most n in C¢. We assume that ¥ C kP
for some k € Z": note 0 € P so Poly(nP) are linear spaces.

Multivariate polynomial approximation and convex bodies



Convexity and remark on degree

Convexity of P implies that
pn € Poly(nP), pm € Poly(mP) = pp - pm € Poly((n+ m)P).
We may define an associated “norm” for x = (xi,...,x4) € ]Ri via

= inf P
Ixlle = inf {x € AP}

and define a general degree of a polynomial p(z) = Zaezi anz“
associated to the convex body P as

degp(p) := max llallp-

Then Poly(nP) = {p : degp(p) < n}.
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Trefethen degree: PAMS, 2017

For g > 1, if we let
Pg:={(x1,..,Xd) : X1,...,xg > 0, x{ +--- 4+ xJ <1}

be the (RT)9 portion of an £9 ball then we have, in Trefethen's
notation (on the left),

dr(p) :=degp,(p) (total degree);
de(p) := degp,(p) (Euclidean degree);

dmax(p) := degp_(p) (max degree).

p(z1,2) = 2723 has degp, (p) = 5; degp,(p) = V13;
degp_(p) = 3 so p € Poly(5P1) N Poly(4P) N Poly(3Py,).

We fix a convex body P C (RT)? with ¥ C kP for some k € Z*.



Bernstein-Walsh, revisited

For K ¢ C? compact and “nonpluripolar” and f continuous on K,
p plurip

Vex(2) = lim [sup{ log|pu(2)] : pa € Poly(nP), [lpullx < 1}]

= lim
n—o0
and D,(f, P, K) :=inf{||f — pn||k : pn € Poly(nP)}.

Theorem
(Bos-L.) Let K be compact with Vp k continuous. Let R > 1 and

Qr = Qr(P,K) ={z: Vpk(z) <logR}.
Let f be continuous on K. Then

limsup Da(f, P, K)" < 1/R.

n—o0

if and only if f is the restriction to K of F holomorphic in Q.
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The proof that limsup,_.. Da(f, P, K)Y/" < 1/R implies f is the
restriction to K of a function holomorphic in 2z works exactly as
before. For the converse direction, the proof is a modification of
the case P = %:

@ use a version of the “lifting” result of Oka on Dgr—sets
@ construct basis {Q;} for Poly(nP) so Dr approximate Qg
© Use Lagrange interpolating polynomials L,(f) for f at
P— Fekete points of K.
Remark: The “true” definition of Vp x will be given later.

We will give some examples first and discuss P—Fekete points
(and more general P—pluripotential theory) later.
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Examples: Vp k for product sets

For P c R? a convex body, the indicator function is

op(X1, .y Xg) = sup  (xiy1+ - Xayd)-
(y15--yd)EP

Proposition

Let Ey,...,Eq C C be compact with Vg, continuous. Then

Ve £ xxE, (215 -y 2d) = ¢p(VE (21), ..., VE,(24)).

We use a global domination principle (TBD later). In particular,
for K=T9={(z1,...,24) : |z1] = -+ = |z4| = 1}, the unit
d—torus in CY,

Vp 1d(z) = Hp(z) = rJneaF>)<Iog 1z/| = pp(log™ |z1], ..., log™ | zq])
(logarithmic indicator function of P). Here |z7| := |z} - - - |zg}".
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Trefethen Runge-type example

Let 1/¢' +1/q =150 ¢p,(x) = |[x]¢, . If Ex,.... Eg CC,

VPq,El><~~~><Ed(Z].7 ey Zd) — H[VEl(Zl)) VEQ(Z2)5 e VEd(Zd)]Héq/
= Ve (2)7 + -+ Ve, (20)7]79.
For the particular product set, K := [—1,1]¢ where E; = [—1,1]

for j =1,...,d, that Trefethen considers,
Ve (z) = log |z + /27 — 1] and hence we have for g > 1

d
VPq,[—L].]d(Z]-‘/ ..../Zd) = Z (|0g ’ZJ + \/ij — 1‘)
j=1
> and K = [-1,1]9, f is holomorphic

— 1
For f(z) := R —
except on its singular set S = {z € C? : 27:1 z? = —r’}, an
algebraic variety having no real points.

!

N Ve
q
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Trefethen Runge-type example, cont'd

-----

theorem, the Dy (f, P, K) decay like 3; where
R=R(P,K):=sup{R' >0: Qp NS =0}

Clearly log(R(P, K)) = mines Vp k(z). We show (Bos.-L):

R(P1,K)=r/Vd+/1+r2/d

<r+V1+4r?>=R(Py,K)= R(Px,K) (indep. of d!).

Thus the approximation order of the Euclidean degree is
considerably higher than for the total degree, while the use of max
degree provides no additional advantage, as reported by Trefethen.
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This is not fair: the dimensions of {p : degp(p) < n} are
proportional (asymptotically) to the volume voly(P):

dim({p : degp(p) < n}) = dim(Poly(nP)) = volg(P) - nf.

To equalize their dimensions we scale P4 by

and observe that R(cP, K) = (R(P, K))¢. For d =2 we compare
R(Py, K) = r/v/2+ /14 r2/2, R(Py, K)® = (r + /14 r2) V'™,
We have R(P, K)°®) > R(Py1, K) for “small” r (r < 2.1090---);

so Euclidean degree, even normalized, has a better approximation
order than the total degree case, but now with a lesser advantage.
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Conclusion and questions

The bottom line is: the Bernstein-Walsh type theorem shows that
the geometry of the singularities of the approximated function f —
provided f is, indeed, holomorphic on a neighborhood of K! —
relative to the sublevel sets of the P—extremal function Vp g
govern the asymptotics of the sequence {D,(f, P, K)} and hence
the number R(P, K) (which we should write as R(P, K, f)).

Given K, P, f, let Qpp k) := {z: Vp k(z) < log R(P, K)} where
limsup,, .o Da(f, P, K)/" =1/R(P, K). Questions:
@ Given K, f find the “best” P (with equalized dim(Poly(nP)))
so that R(P, K) is largest.

Q Iflimsup, . Do(f, K)Y/" = limsup, ... Da(g, K)¥/" = 1/R,
then f, g are holomorphic in Qg = {z: Vk(z) < log R}
(classical Bernstein-Walsh). Which is “better”?
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InC, let K={z:|z| <1/R}. Then f(z) = -5 is “better’ than
g(z) = " z" as holomorphic functions in the unit disk Qg.

We can't “detect” this, but in C¢, d > 1, given K, f, we can
compute Qg (p k) for various convex bodies P to get a better
picture of the true “region of holomorphicity” of f: it contains
UpQpr(p,k). For “real” theory, we can look, e.g., at traces
Qrep,k) N RY for f real-analytic on a neighborhood of K C RY.

We return to the proof of the “hard” direction of the theorem: to
show that f holomorphic in Qg = {z: Vp k(z) < log R} implies

limsup Da(f, P, K)*" < 1/R.

n—o0
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Sketch of proof

Step I1: Let b, =dimPoly(nP). Let Q1, ..., Qp, be a basis for
Poly(nP). Define

Drp:={zcC?:|Qi(2) < R", j=1,..,b,}.

Proposition

Let f be holomorphic in a neighborhood of Dg. Then for each
positive integer m, there exists G, € Poly(mP) such that for all
p<R,

If = Gmllp, < B(p/R)"

where B is a constant independent of m.

Proof follows P = ¥ case and requires S : C? - CPn via
S5(z) == (Qi(2), ..., Qb,(2)) be one-to-one on Dg (follows for
n > k where ¥ C kP).
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Sketch of proof, continued

Step 2: Construct polynomials Q1 ..., Qp, so that for n large the
sets Dr approximate the sublevel sets {2r of Vp k; i.e., given

0 < R1 < R, there exists ng such that for all n > ng, Dg, C Qr.
Use P—Fekete points and fundamental Lagrange interpolating
polynomials to construct Q;. Here

Ve k(z) = limyoo0 % log ®p (z) where

pn(2) = sup{lpn(2)] : pn € Poly(nP), [|pallic <1} and if
Vp k(z) is continuous, the convergence is locally uniform on cY.

Step 3: For any R’ < R the Lagrange interpolating polynomials
Ln(f) for f associated with a P—Fekete array for K satisfy

1 = La(F)llx < B/(R)"

where B is a constant independent of n.
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Part 3: P—extremal functions in C¢

We briefly describe some basics of the “P— pluripotential theory.”
Associated to P C (R*)9 a convex body, recall we have the
logarithmic indicator function on C¢

Hp(z) := sup log |z7| := sup log[|zL " - - - |zg["];
Jep JeP

Lp = Lp(CY) := {u € PSH(C?) : u(z) — Hp(z) = 0(1), |z| — oo}.
For p € Poly(nP), n>1 we have log|p| € Lp. Given K C C¥,
the P—extremal function of K is Vp k(z) where the a priori
definition of Vp i is
Vp k(z) := sup{u(z) : u € Lp(C), u<0on K}.

This is a Perron-Bremmerman family:(ddVp x)? = 0 outside K.
Example: K = T9, the unit d—torus in C?. Then

Vp 14(2) = Hp(z) = suplog|2”|.

JepP
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Example: Vp 14(z) = Hp(z) = sup cp log |2/

Here, (dd“Vp 4)? = dI(VOI)( Ly - dbgy is the Monge-Ampére

measure of Vpp 14. For a C?—function u on C¢,
(ddcu)d = ddcu A A ddcu = C4q det[ﬂ] de
82]82/( I

where dV = (4)9 27:1 dz; A dZ; is the volume form on C9 and ¢y
is a dimensional constant. Here,

du=2i Z 321(92 w——F=dziANdZ = Au-dV in C.

If u locally bounded psh (dd€u)? well-defined as positive measure.
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P—extremal functions and P = X case

Using Hormander L2 — J— theory, T. Bayraktar showed:

(T. Bayraktar) We have

1
Vpx(2) = lim [sup{-10g|pn(2)|: pn € Poly(nP), Ilpalli < 1}].

lim
n—o0

This is the starting point to develop a P—pluripotential theory. For
d
P=%={(x1,...xq) ERT:0< x, <1, ZX,' <1},
j=1
Poly(n¥) = Pp, and we recover “classical” pluripotential theory:
Hs(z) = max[0,log |z1], ..., log |z4|]] = max[log™ |z, ..., log™ |z4]]

and [_): = L; VZ,K = VK.
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Remark: Global Domination Principle

We have L := {u € Lp : u(z) > Hp(z) + c,}. We call
up € PSH(CY) a strictly psh P—potential if

Q upc LJPF is strictly psh and

@ there exists C such that |up(z) — Hp(z)| < C for all z € C¢.
We have existence of up which may replace Hp:

Lp = {u € PSH(CY) : u(z) — up(z) = 0(1), |z| — oo}

and
Ly ={u€lp:u(z) > up(z)+ cu}-

Using up we can prove a global domination principle:

Letu e Lp and v € LJ,S with u < v a.e. (dd°v)?. Then u < v in
cH.
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Recall by, is the dimension of Poly(nP). We can write
Poly(nP) = span{ex, ..., ep, }

where {ej(z) := z0U)};_1 _p, are the standard basis monomials.
The ordering is unimportant. For points (1, ..., (p, € CY, let

VDM (G1, ..., Cb,) = det[e;(¢j)]ij=1....bn (1)
er(¢1) e(&) ... eCp,)

= det : : - :
b, (C1) e, (G2) - - en,(Chy)

For K C C9 compact, P—Fekete points of order n maximize

|VDME Gy, ..., o, )| over G,y G, € K. Let fp := 327 deg(ey).
Then (nontrivial!) the limit

5(K,P):= lim max |VDMP(¢y, ..., )| " exists.

N—00 (1,...,¢hy €K
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Asymptotic P—Fekete arrays and (dd“Vp x)?

Let K € C9 be compact. For each n, take points

Z{n)azén), e ,zé:) € K for which

. n n 1
nmoyvomf(z{ Vo dM) = 5(K, P)

(asymptotic P—Fekete arrays) and let p, := b%.

Zjbil 5Zgn) . Then
J

1
n— —————(dd°Vp x )9 weak — *.
. d!Vo/(P)( Pr)" weak —x

The proof of these results rely on techniques from Berman and
Boucksom, Invent. Math., (2010) and involve weighted notions of
Vp i and §(K, P). See Bayraktar, Bloom, L., Pluripotential
Theory and Convex Bodies. Remark: (dd®Vp )9 is the “target”
for zeros of random polynomial mappings — and our motivation.
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Questions: product sets

Recall

Vp £ x-xEy (215 -y 2d) = op(VE (21), .., VE,(24)).

For T ={(z1,..,z4) : |z/ =1, j=1,...,d} and 1 < g < o0,
(dd°Vp_ 14)? is a multiple of Haar measure on T¢ and for

q-
[_17 1]dv

d
Ve, e (210 2a) = 4 (Iog ‘zj + \/2127_1D
=1

@ Is supp (dd© qu’[leld)d = [~1,1]? always?
@ More generally, what can one say about
supp(dd® meElX...XEd)d for 1 < g < 00?

!

1/q
q
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Other sets: the complex Euclidean ball in C?

For K = By = {(z1,22) € C?: |z1> 4+ |22|?> < 1} and P = P, we
have shown:

T{log(|z]?) — log(1 — |z12)} [z <1/2, || > 1/2
Vp..8:(2) = { 5 {log(|z1?) — log(1 = |2[?)} |z1]? >1/2, || < 1/2
log |z1| + log | z2| + log(2) 212> 1/2, |2 > 1/2.

Thus the measure (dd¢ V,inQ)2 is Haar measure on the torus

{|lz1] = 1/v/2, |z| = 1/3/2} (with total mass 2). On the other
hand, it is well known that (dd¢ VF*’l,Bz)2 is normalized surface

measure on JB,. What can we say about supp(dd® V,’;q 32)2 for
1< g<o0? What is VF*,q,B2?
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A final question ... from numerical analysis

What can one say if P is not convex? For example, let
Pg:={(x1,..,Xd) : X1, ., xa > 0, X + -+ x5 < 1},

for 0 < g < 1. Is there a Bernstein-Walsh theorem? Even for
“g=10":

Py = Ule{(xl, wXd) 1 0<x <1, x=0, k#j}.
Let K =[-1,1]> c R?2 C C? and f(z,w) = g(z) + h(w), g, h
holomorphic in a neighborhood of [—1,1]. Here one should only
use polynomials of the form p(z) + g(w) and thus
Dp(f,Pq, K) = Du(f,P1,K), 0< g <1.

What is the “true” extremal function Vp 7
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CONGRATULATIONS
to TOM !!!

THANK YOU ALL I!!




