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Spectral function, Weyl’s law:
• [JP]: GAFA, 17 (2007), 806-838.
• [JPT]: IMRN Volume 2007: article ID rnm142.
• [DJ]: Journal of Modern Dynamics 10 (2016), 339-352.



X n,n ≥ 2 - compact. ∆ - Laplacian. Spectrum:
∆φi + λiφi = 0, 0 = λ0 < λ1 ≤ λ2 ≤ . . .
Eigenvalue counting function:
N(λ) = #{

√
λj ≤ λ}.

Weyl’s law: N(λ) = CnVλn + R(λ), R(λ) = O(λn−1)
(Avakumovic, Levitan; Hörmander - more general operators).
R(λ) - remainder. Duistermaat-Guillemin: R(λ) = o(λn−1) if
the set of periodic geodesics in T 1X (unit sphere bundle of X )
has measure 0. On Sn, all geodesics are periodic (also on Zoll
manifolds); R(λ) � λn−1 on Sn.



Manifolds with boundary. H. Weyl conjectured (1913) that for
the Laplacian in a domain Ω of dimension n, we have

N(λ) = c0voln(Ω)λn ∓ c1voln−1(∂Ω)λn−1 + o
(
λn−1

)
. (1)

Here − corresponds to Dirichlet, and + to Neumann boundary
conditions, and cj -s depend only on n.
Courant (1920): R(λ) = O(λn−1 logλ).
Seeley (1978): R(λ) = O(λn−1).
Ivrii, Melrose: proved H. Weyl’s conjecture (1), provided the set
of periodic billiard trajectories in Ω has measure 0. Ivrii
conjectured that this condition holds for general Euclidean
domains; that conjecture is still open.



Spectral function: Let x , y ∈ X .
Nx ,y (λ) =

∑√
λi≤λ φi(x)φi(y).

If x = y , let Nx ,y (λ) := Nx (λ).
Local Weyl’s law:
Nx ,y (λ) = O(λn−1), x 6= y ;
Nx (λ) = Cnλ

n + Rx (λ), Rx (λ) = O(λn−1); Rx (λ) - local
remainder.
We shall discuss lower bounds for R(λ),Rx (λ) and Nx ,y (λ).
Notation: f1(λ) = Ω(f2(λ)), f2 > 0 iff
lim supλ→∞ |f1(λ)|/f2(λ) > 0. Equivalently, f1(λ) 6= o(f2(λ)).



Lower bounds:
Theorem 1[JP] If x , y ∈ X are not conjugate along any shortest
geodesic joining them, then

Nx ,y (λ) = Ω
(
λ

n−1
2

)
.

Theorem 2[JP] If x ∈ X is not conjugate to itself along any
shortest geodesic loop, then

Rx (λ) = Ω(λ
n−1

2 )

Other results in dimension n > 2 involve heat invariants.



Example: flat square 2-torus
λj = 4π2(n2

1 + n2
2), n1,n2 ∈ Z

φj(x) = e2πi(n1x1+n2x2), x = (x1, x2)

|φj(x)| = 1 ⇒ N(λ) ≡ Nx (λ)

Gauss circle problem: estimate R(λ).
Theorem 2⇒ R(λ) = Ω(

√
λ) -

Hardy–Landau bound. Theorem 2 generalizes that bound for
the local remainder.

Soundararajan (2003): R(λ) = Ω

(
√
λ(logλ)

1
4 (log logλ)

3(24/3−1)
4

(log log logλ)5/8

)
.

Hardy’s conjecture: R(λ)� λ1/2+ε ∀ε > 0.
Huxley (2003): R(λ) � λ

131
208 (logλ)2.26.



Negative curvature. Suppose sectional curvature satisfies
−K 2

1 ≤ K (ξ, η) ≤ −K 2
2

Theorem (Berard): Rx (λ) = O(λn−1/ logλ)
Conjecture (Randol): On a negatively-curved surface,
R(λ) = O(λ

1
2 +ε). Randol proved an integrated (in λ) version for

Nx ,y (λ).
Theorem (Karnaukh) On a negatively curved surface

Rx (λ) = Ω(
√
λ)

+ logarithmic improvements discussed below. Karnaukh’s
results (unpublished 1996 Princeton Ph.D. thesis under the
supervision of P. Sarnak) served as a starting point and a
motivation for our work.



Thermodynamic formalism: Gt - geodesic flow on SX ,
ξ ∈ SX . Sinai-Ruelle-Bowen potential (= “unstable jacobian”)
H : SX → R:

H(ξ) =
d
dt

∣∣∣∣
t=0

ln det dGt |Eu
ξ

where dim Eu
ξ ⊂ Tξ(SX ) is the unstable subspace exponentially

contracting for the inverse flow G−t (flow-invariant, dim = n−1.)
Topological pressure P(f ) of a Hölder function f : SX → R
satisfies (Parry, Pollicott)

∑
l(γ)≤T

l(γ) exp
[∫

γ
f (γ(s), γ′(s))ds

]
∼ eP(f )T

P(f )
.

γ - geodesic of length l(γ).



Examples:
(a): P(0) = h - topological entropy of Gt . Theorem (Margulis):
#{γ : l(γ) ≤ T} ∼ ehT/hT .
(b): P(−H/2) ≥ (n − 1)K2/2
(c): P(−H) = 0.

Theorem 3[JP] If X is negatively-curved then for any δ > 0 and
x 6= y

Nx ,y (λ) = Ω
(
λ

n−1
2 (logλ)

P(−H/2)
h −δ

)
Since h ≤ (n − 1)K1, we have P(−H/2)/h ≥ K2/(2K1) > 0.



Theorem 4a[JP] X - negatively-curved. For any δ > 0

Rx (λ) = Ω
(
λ

n−1
2 (logλ)

P(−H/2)
h −δ

)
, n = 2,3.

Results for n ≥ 4 : need to subtract heat invariants.

K = −1 ⇒ Rx (λ) = Ω
(
λ

n−1
2 (logλ)

1
2−δ
)

Karnaukh, n = 2: estimate above + weaker estimates in
variable negative curvature.



Global results: R(λ)
Randol, n = 2:

K = −1 ⇒ R(λ) = Ω
(

(logλ)
1
2−δ
)
, ∀δ > 0.

Theorem 4b[JPT] X - negatively-curved surface (n = 2). For
any δ > 0

R(λ) = Ω
(

(logλ)
P(−H/2)

h −δ
)
.

Conjecture (folklore). On a generic negatively curved surface

R(λ) = O(λε) ∀ε > 0.



Selberg, Hejhal: On general compact hyperbolic surfaces,

R(λ) = Ω

(
(logλ)

1
2√

log logλ

)
.

On compact arithmetic surfaces that correspond to quaternionic
lattices R(λ) = Ω

( √
λ

logλ

)
.

Reason: exponentially high multiplicities in the length
spectrum; generically, X has simple length spectrum.

[JN10]: similar ideas are used to obtain lower bounds for
resonances of infinite area hyperbolic surfaces.



Proof of Theorem 4b: (about R(λ)). X -compact,
negatively-curved surface.
Wave trace on X (even part):

e(t) =
∞∑

i=0

cos(
√
λi t).

Cut-off: χ(t ,T ) = (1− ψ(t))ρ̂
( t

T

)
, where

• ρ ∈ S(R), supp ρ̂ ⊂ [−1,+1], ρ ≥ 0, even;
• ψ(t) ∈ C∞0 (R), ψ(t) ≡ 1, t ∈ [−T0,T0], and
ψ(t) ≡ 0, |t | ≥ 2T0.
In the sequel, T = T (λ)→∞ as λ→∞. Let

κ(λ,T ) =
1
T

∫ ∞
−∞

e(t)χ(t ,T ) cos(λt)dt



Key microlocal result:
Proposition 9. Let T = T (λ) ≤ ε logλ. Then

κ(λ,T ) =
∑

l(γ)≤T

l(γ)# cos(λl(γ)) · χ(l(γ),T )

T
√
|det(I − Pγ)|

+ O(1)

where
γ - closed geodesic; l(γ) - length; l(γ)#-primitive period; Pγ -
Poincaré map.
Long-time version of the “wave trace” formula of Duistermaat
and Guillemin, microlocalized to shrinking neighborhoods of
closed geodesics. Allows to isolate contribution from a growing
number of closed geodesics with l(γ) ≤ T (λ) to κ(λ,T ) as
λ,T (λ)→∞.



Proof - separation of closed geodesics in phase space +
small-scale microlocalization near closed geodesics.
Dynamical lemma: Let X - compact, negatively curved
manifold. Ω(γ, r) - neighborhood of γ in S∗X of radius r
(cylinder). There exist constants B > 0,a > 0 s.t. for all closed
geodesics on X with l(γ) ∈ [T − a,T ], the neighborhoods
Ω(γ,e−BT ) are disjoint, provided T > T0.
Radius r = e−BT is exponentially small in T , since the number
of closed geodesic grows exponentially.
Remark: on a dense set of negatively curved metrics, there is
no exponential lower bound between lengths of different closed
geodesics ([DJ]), so it is essential to work in phase space,
where the Dynamical lemma provides the required separation.
However, such separation holds for many hyperbolic manifolds,
since the generators of π1(X ) are matrices with algebraic
entries.



Our local estimates are not uniform in x , y . Need Proposition 9
to prove global estimates.
Heat trace asymptotics:

∑
i

e−λi t ∼ 1
(4π)n/2

∞∑
j=0

aj t j− n
2 , t → 0+

Local: K(t , x , x) =
∑

i e−λi tφ2
i (x) ∼

1
(4π)n/2

∑∞
j=0 aj(x)t j− n

2 ,

aj(x) - local heat invariants, aj =
∫

X aj(x)dx .
a0(x) = 1, a0 = vol(X ). a1(x) = τ(x)

6 , τ(x) - scalar curvature.



“Heat kernel” estimates:
Theorem 2b[JP] If the scalar curvature
τ(x) 6= 0,=⇒ Rx (λ) = Ω(λn−2).
Global:[JPT] If

∫
X τ 6= 0,⇒ R(λ) = Ω(λn−2).

Remark: if τ(x) = 0, let k = k(x) be the first positive number
such that the k -th local heat invariant ak (x) 6= 0. If
n − 2k(x) > 0, then

Rx (λ) = Ω(λn−2k(x)).

Similar result holds for R(λ): if
∫

ak (x)dx 6= 0 and n − 2k > 0,
then

R(λ) = Ω(λn−2k ).



Oscillatory error term: subtract [(n − 1)/2] terms coming from
the heat trace:
Nx (λ) =

∑[ n−1
2 ]

j=0
aj (x)λn−2j

(4π)
n
2 Γ( n

2−j+1)
+ Rosc

x (λ)

Warning: not an asymptotic expansion!
Physicists: subtract the “mean smooth part” of Nx (λ).
Theorem 2c[JP] If x ∈ X is not conjugate to itself along any
shortest geodesic loop, then

Rosc
x (λ) = Ω(λ

n−1
2 )

Theorem 4c[JP] X - negatively-curved. For any δ > 0
Rosc

x (λ) = Ω
(
λ

n−1
2 (logλ)

P(−H/2)
h −δ

)
, any n.

If n ≥ 4 then Theorem 2b, Rx (λ) = Ω(λn−2) gives a better
bound for Rx (λ).
Global Conjecture: X - negatively-curved. For any δ > 0
Rosc(λ) = Ω

(
(logλ)

P(−H/2)
h −δ

)
, any n.



Almost periodic properties of the remainder:
Let N(R) be the eigenvalue counting function on T2.
Heath-Brown in 1990s showed that the quantity

f (R) = (N(R)− πR2)/
√

R,

has a limiting distribution, i.e. that

lim
T→∞

meas{R ∈ [T ,2T ] : f (R) ∈ [a,b]}
T

=

∫ b

a
P(s)ds,

where P(s) is a.c. w.r. to the Lebesgue measure, and
|P(s)| � exp(−|s|4) as |s| → ∞.
Many related results for a shifted circle problem, as well as for
the remainder term on surfaces of revolution, Zoll surfaces, and
Liouville tori (metric has the form (f (x) + g(y))(dx2 + dy2) were
obtained by Bleher, Dyson, Lebowitz, Minasov, Kosygin, Sinai
et al. They showed that f (R) is a B2 almost periodic function in
the sense of Besikovitch.



Almost periodic properties of the remainder may be a more
general phenomenon. For e.g. negatively-curved manifolds,
Aurich, Bolte and Steiner conjectured that a (suitably
normalized) remainder has a limiting distribution that is
Gaussian. There are very few rigorous results in this direction.
The behavior of N(x , y , λ)/(λ(n−1)/2) was studied by Lapointe,
Polterovich and Safarov. They showed the following. Let
NE (λ,d) = (2π)−n/2d−n/2λn/2Jn(dλ) be the “Euclidean”
spectral function; here d = d(x , y). Then there exists CM s.t.∫

M

∣∣∣∣N(x , y , λ)− NE (λ,d(x , y))

λ(n−1)/2

∣∣∣∣2 dV (y) ≤ CM

Also, for any finite measure dν(λ) on R, and for any fixed
x ∈ M, there exists Mx ,ν ⊂ M of the full measure s.t. ∀y ∈ Mx ,ν ,∫ ∞

0
|N(x , y , λ)|2/λn−1dν(λ) <∞.



Further related results were obtained by B. Khanin and Y.
Canzani; they studied N(x , y , λ) near the “diagonal” x = y .



Resonances
Joint work with F. Naud, [JNS17] also with L. Soares.
[JN10] Lower bounds for resonances of infinite area Riemann
surfaces. Journal of Analysis and PDE, vol. 3 (2010), no. 2,
207-225.
[JN12] On the critical line of convex co-compact hyperbolic
surfaces. GAFA vol. 22, no. 2 (2012), 352-368.
[JN16] Resonances and density bounds for convex co-compact
congruence subgroups of SL2(Z). Israel Jour. of Math. 2016,
vol. 213 (2016), 443-473.
[JNS17] Large covers and sharp resonances of hyperbolic
surfaces. arxiv:1710.05666



Hyperbolic manifolds

Let Hn+1 be the usual real hyperbolic space with sectional
curvatures −1 and Γ a discrete group of isometries.
The orbit of any z ∈ Hn+1 under Γ-action accumulates at
infinity, the limit set is defined by Λ(Γ) := ∂Hn+1 ∩ Γ.z.
A discrete group Γ, without elliptic elements, is called convex
co-compact iff the convex hull of the limit set is co-compact.



The quotient X = Γ\Hn+1 is an infinite volume hyperbolic
manifold called convex co-compact.
Let δ = δ(Γ) be the Hausdorff dimension of the limit set.
The geodesic flow on φt : SX → SX has a maximal compact
invariant subset T ⊂ SX , the ”trapped set” with dimension
2δ + 1,

T ' (Λ× Λ \ D)× R mod Γ.

Liouville-almost all orbits of φt escape to infinity i.e. Vol(T ) = 0.



Laplace spectrum and resonances

Let ∆X be the hyperbolic Laplacian on X = Γ\Hn+1.
Lax-Phillips classical results describe the L2-spectrum of ∆X :

1. Point spectrum is finite and in (0,n2/4).
2. Absolutly continuous spectrum is [n2/4,+∞).
3. No embbeded eigenvalues in [n2/4,+∞).

If δ > n/2, then δ(n − δ) is an eigenvalue, it’s the bottom of the
spectrum.
If δ ≤ n/2, point spectrum is empty.
Let

R(s) := (∆X − s(n − s))−1 : L2(X )→ L2(X )

be the resolvent, meromorphic on the physical sheet
{<(s) > n/2}.



From [Mazzeo-Melrose, 1987] we know that

R(s) : C∞0 (X )→ C∞(X )

continues meromorphically to C. Poles are called resonances.
The structure of R(s) at a resonance s0 is given by a finite
Laurent expansion

R(s) =
∑

j

Aj(s0)

(s(n − s)− s0(n − s0))j + Holomorphic,

where A1(s0) =
∑mult(s0)

k=1 φk ⊗ φk , with ∆φk = s0(n − s0)φk .
Each (non-L2) eigenfunction φk is called a resonant state.



Numerical computations for surfaces
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Numerics by D. Borthwick (2012)



Numerics by D. Borthwick & T. Weich (2017)





First resonance
From now on, we set n = 2, so that X = Γ\H2 is a surface.

Theorem [Patterson: 1976, 1989]. For a convex co-compact
quotient X = Γ\H2, the first resonance is a simple pole at
s = δ, with no other resonances on {<(s) = δ}, in particular ∆X
has eigenvalues iff δ > 1

2 .
Theorem [Ballmann-Matthiesen-Mondal: 2016]. For a convex
co-compact quotient X = Γ\H2, the number of eigenvalues is at
most −χ(X ).
Proof generalizes results of Otal-Rosas for small eigenvalues
on compact hyperbolic surfaces. Higher dimensions??



Global upper bounds
Theorem [Guillopé-Zworski 1995, 1997] For X = Γ\H2, let
RX = {Resonances}. Then we have as t → +∞,

#{s ∈ RX : |s − 1/2| < t} � t2.

Higher dimensions: Upper bound [Patterson-Perry 2001,
Cuevas-Vodev 2003, B 2008, Borthwick-Guillarmou 2016].
Lower bound [Perry 2003, Borthwick 2008].

Theorem [Guillopé-Lin-Zworski 2006] For σ ≤ δ, set

n(σ,T ) = #{s ∈ RX : <(s) ≥ σ and |=(s)− T | ≤ 1}.

Then for all σ, as T → +∞, we have

n(σ,T ) = Oσ(T δ).

Extensions to all convex co-compact hyperbolic manifolds by
[Dyatlov-Datchev 2013].



Spectral gaps

Theorem ([Naud 2005, Bourgain-Dyatlov 2017])
There exists ε(Γ) > 0 such that RX ∩ {δ − ε ≤ <(s) ≤ δ} = {δ}.
Moreover, there exists ε0(δ) > 0 such that
RX ∩ {δ − ε0 ≤ <(s) ≤ δ} is finite.
When δ > 1/2, this statement follows readily from the
discreteness of the spectrum below 1/4.

Theorem [Bourgain-Dyatlov 2016]
There exists ε1 > 0 such that RX ∩ {1/2− ε1 ≤ <(s)} is finite.
Conjecture [JN12](Essential Spectral Gap)
Set GAP(Γ) = inf{σ ∈ R : RX ∩ {σ ≤ <(s)} is finite}. Then
GAP(Γ) = δ/2.
If Γ is cofinite, then we know (Selberg) that indeed
GAP(Γ) = δ/2 = 1/2. All previous results support the
conjecture (or at least are consistent with it).



Lower bounds: Guillopé, Zworski: ∀ε > 0, ∃Cε > 0, such that

NCε(T ) = Ω(T 1−ε).

The proof uses a wave trace formula for resonances on X and
takes into account contributions from a single closed geodesic
on X .
Question: Can one improve lower bounds taking into account
contributions from many closed geodesics on X?
Answer: Yes, [JN10].



Guillopé, Lin, Zworski: let

D(z) = {λ ∈ RX : |λ− z| ≤ 1}

Then for all z : =(z) ≤ C, we have D(z) = O(|<(z)|δ).
Let A > 0, and let WA denote the logarithmic neighborhood of
the real axis:

WA = {λ ∈ C : =λ ≤ A log(1 + |<λ|)}

Theorem 5. Let X be a geometrically finite hyperbolic surface
of infinite area, and let δ > 1/2. Then there exists a sequence
{zi} ∈WA,<(zi)→∞ such that

D(zi) ≥ (log |<(zi)|)
δ−1/2
δ
−ε.



Corollary: If δ > 1/2, then WA ∩RX is different from a lattice.
Examples of Γ such that δ(Γ) > 1/2 are easy to construct.
Pignataro, Sullivan: fix the topology of X . Denote by l(X ) the
maximum length of the closed geodesics that form the
boundary of N. Then λ0(X ) ≤ C(X )l(X ), where C = C(X )
depends only on the topology of X . By Patterson-Sullivan,
λ0 < 1/4⇔ δ > 1/2, so letting l(X )→ 0 gives many examples.
Proof of Theorem 5 uses (a version of Selberg) trace formula
due to Guillopé and Zworski, and Dirichlet box principle.



Theorem 5 gives a logarithmic lower bound
D(zi) ≥ (log |<(zi)|)

δ−1/2
δ
−ε for an infinite sequence of disks

D(zi ,1). Conjecture of Guillopé and Zworski would imply that
∀ε > 0 ∃{zi} such that D(zi) ≥ |<(zi)|δ−ε.
Question: can one get polynomial lower bounds for some
particular groups Γ?
Answer: Yes. Idea: look at infinite index subgroups of
arithmetic groups, and use methods of Selberg-Hejhal.
Theorem 6. Let Γ be an infinite index geom. finite subgroup of
an arithmetic group Γ0 derived from a quaternion algebra. Let
δ(Γ) > 3/4. Then ∀ε > 0,∀A > 0, there exists
{zi} ⊂WA,<(zi)→∞, such that

D(zi)) ≥ |<(zi)|2δ−3/2−ε.



Key ideas: arithmetic case.
Number of closed geodesics on X :

#{γ : l(γ) < T} ∼ eδT

δT
, T →∞.

Number of distinct closed geodesics in the arithmetic case: for
Γ derived from a quaternion algebra, one has

#{L < T : L = l(γ)} � eT/2.

Accordingly, for δ > 1/2, there exists exponentially large
multiplicities in the length spectrum.
Distinct lengths are well-separated in the arithmetic case: for
l1 6= l2, we have

|l1 − l2| � e−max(l1,l2)/2.

Ex: M1,M2 ∈ SL(2,Z), trM1 6= trM2 then
|trM1 − trM2| = 2| cosh(l1/2)− cosh(l2/2)| ≥ 1.



We also use a trace formula (Guillopé, Zworski): Let
ψ ∈ C∞0 ((0,+∞)), and N - Nielsen region. Then (in case there
are no cusps)

∑
λ∈RX

ψ̂(λ) = −V (N)

4π

∫ +∞

0

cosh(t/2)

sin2(t/2)
ψ(t)dt

+
∑
γ∈P

∑
k≥1

l(γ)ψ(kl(γ))

2 sinh(kl(γ)/2)
,

where P = {primitive closed geodesics on X}.



It follows from a recent result of Lewis Bowen that in every
co-finite or co-compact arithmetic Fuchsian group, one can find
infinite index convex co-compact subgroups with δ arbitrarily
close to 1 (and in particular > 3/4). A. Gamburd considered
infinite index subgroups of SL2(Z) and constructed subgroups
ΛN such that δ(ΛN)→ 1 as N →∞. It was shown in [JN10] that
subgroups ΓN of ΛN (of index two) provide examples of
“arithmetic” groups with δ(ΓN) > 3/4 for large enough N.
Related questions were also considered by Bourgain and
Kantorovich.
The results of [JN10] can probably be generalized to hyperbolic
3-manifolds.



Existence of sharp resonances
Sharp resonances are non-trivial resonances (other than δ) that
are the closest to <(s) = min{1/2, δ}.
Theorem [Guillopé-Zworski 1999] For σ ≤ δ, set

N(σ,T ) = #{s ∈ RX : <(s) ≥ σ and |=(s)| ≤ T}.

Then for all ε > 0, one can find σε such that

N(σε,T ) = Ω(T 1−ε).

Theorem ([JN12])
For all ε > 0, RX ∩ {δ/2− δ2 − ε ≤ <(s)} is infinite. If in
addition Γ is arithmetic with δ > 1/2 then there are infinitely
many resonances in

{<(s) ≥ δ/2− 1/4− ε}.



Large Galois covers
Let Γ be a fixed convex co-compact Fuchsian group. Any
normal subgroup Γj ⊂ Γ with finite index yields a Galois cover

Γj\H2 → Γ\H2

with Galois group Gj = Γ/Γj . Limit sets of Γj are the same:
Λ(Γj) = Λ(Γ).
Theorem 7 [Jakobson-Naud 2016] Assume that we have a
family Γj as above with |Gj | → ∞. Let Resj denote resonances
of Xj := Γj\H2, then for all ε, ε̃ > 0, as j →∞ we have

C−1
ε |Gj | ≤ #Resj ∩ {|s| ≤ log1+ε(log |Gj |)} ≤ |Gj |1+ε̃.

Examples: congruence subgroups given by:

Γ ⊂ SL2(Z), Γp = {γ ∈ Γ : γ ≡ Id mod p},

but also abelian covers where Gj is a sequence of finite Abelian
groups (ex: cyclic covers).



Related work for covers of compact manifolds:
H. Huber, On the spectrum of the Laplace operator on compact
Riemann surfaces, Comm. Math. Helv. 57 (1982), 627-647.
R. Brooks, The spectral geometry of a tower of coverings. JDG
23:97-107, 1986. D. L. de George and N. R. Wallach. Limit
formulas for multiplicities in L2(Γ\G). Ann. of Math.
107:133-150, 1978.
H. Donnelly. On the spectrum of towers. Proc. Amer. Math.
Soc. 87:322-329, 1983.
E. Le Masson and T. Sahlsten. Quantum ergodicity and
Benjamini-Schramm convergence of hyperbolic surfaces.
arXiv:1605.05720v3
Abert, Bergeron et al: On the growth of L2 -invariants for
sequences of lattices in Lie groups. Ann. Math. 185:711-790,
2017.



These results say (in the simplest form) that if Xj is a sequence
of compact hyperbolic surfaces with Inj(Xj)→∞, then for any
compact interval I ⊂ (1/4,+∞),

#Spj ∩ I ∼ CIVol(Xj),

where CI is some ”explicit” constant depending only on I.



Abelian Covers Here we assume that Γj C Γ is given by

Γj = Ker(ϕj),

where ϕj : Γ→ Gj is an onto morphism, with abelian image Gj .
The corresponding surface is denoted by

Xj := Γj\H2.

Basic example (cyclic covers). We have the identity

Γab ' H1(X ,Z) ' Zr ,

for some r ≥ 2. Then ΠN : Zr → Z/NZ given by

ΠN(x1, . . . , xr ) = x1 mod N,

produces a normal subgroup ΓN C Γ such that the covering
group is Z/NZ.



A picturesque view of cyclic covers



In the abelian case, sharp resonances/low eigenvalues
equidistribute near δ.
Theorem 8 [JNS17] Assume that Γ is non elementary. Assume
that Gj is Abelian, and |Gj | → ∞. Then up to sequence
extraction, there exists a neighbourhood U 3 δ such that for all j
large, Res(Xj) ∩ U ⊂ R and for all ϕ ∈ C0(U),

lim
j→∞

1
|Gj |

∑
λ∈Res(Xj )

ϕ(λ) =

∫
ϕdµ,

where µ is an absolutely continuous measure supported on an
interval [a, δ], for some a < δ.
In the compact and finite area case, Randol (1974) and Selberg
showed that by moving to a finite abelian cover, one can have
has many low eigenvalues in [0,1/4] as wanted.
Theorem 8 is a quantitative version of that, which works for
resonances!



A related result:
Theorem 83

4 : Let X = Γ\H2 have at least one cusp. Assume
that Gj is Abelian, and |Gj | → ∞. Then for all ε > 0, there exists
j > 0 s.t. Xj = Γj\H2 has at least one nontrivial resonance s
with |δ − s| ≤ ε.



Congruence covers
Here we have

Γ ⊂ SL2(Z), Γp = {γ ∈ Γ : γ ≡ Id mod p},

and for all p large enough prime number, we have

Γ/Γ(p) ' SL2(Fp).

Low eigenvalues and sharp resonances exhibit some rigidity
when |Gj | → ∞.
[Gamburd, 2002]. If Γ ⊂ SL2(Z) is a finitely generated subgroup
and δ > 5/6 then for all p large,

Res(Γp\H2) ∩ {<(s) > 5/6} = Res(Γ\H2) ∩ {<(s) > 5/6}.

[Oh-Winter, 2016]. If Γ ⊂ SL2(Z) is a finitely generated
subgroup, then there exists ε(Γ) such that for all p large

Res(Γp\H2) ∩ {<(s) > δ − ε} = Res(Γ\H2) ∩ {<(s) > δ − ε}

= {δ}.



All of these results can be seen as part of a Generalized
Selberg’s conjecture.

Conjecture For all finitely generated subgroups Γ of SL2(Z), for
all ε > 0 we have for all p large,

Res(Γp\H2)∩{<(s) > δ/2+ε} = Res(Γ\H2)∩{<(s) > δ/2+ε}.

Theorem 9 [Jakobson-Naud 2016] There exists a computable
α(Γ) > 0 such that for all σ ≥ δ/2, we have

#Resj ∩ {<(s) ≥ σ and |=(s)| ≤ T} ≤ CT |Gp|1+(δ−2σ)α(Γ),

here Gp = Γ/Γp ' SL2(Fp), and |Gp| � p3.



Theorem 10 [Jakobson-Naud 2017] Let Γ ⊂ SL2(Z) be a
convex co-compact subgroup and δ > 3/4. Let Resp denote
the resonances of Xp := Γp\H2. We set

Nε(p) := #Resp∩
{
|=(s)| ≤ log1+ε(log p) and <(s) > δ − 3

4
− ε
}
.

Then for all ε > 0, for all ε̃ > 0, as p →∞ we have for large p.

p − 1
2
≤ Nε(p) ≤ p3+ε̃.

Remark:
0−Vol(Xp) � χ(Xp) � |Gp| � p3

Extensions of Theorem 10 to more general ”arithmetic covers”
(arising from quaternion algebras) are doable.
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