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Spectral function, Weyl’s law:

¢ [JP]: GAFA, 17 (2007), 806-838.

¢ [JPT]: IMRN Volume 2007: article ID rnm142.

e [DJ]: Journal of Modern Dynamics 10 (2016), 339-352.



X" n> 2 -compact. A - Laplacian. Spectrum:

AP+ Aidi=0, 0= < A <A< ...

Eigenvalue counting function:

N = #{/N < AL

Weyl’s law: N(\) = C,VA" + R(\), R(\) = O(A"1)
(Avakumovic, Levitan; Hormander - more general operators).
R()\) - remainder. Duistermaat-Guillemin: R(\) = o(\"~") if
the set of periodic geodesics in T'X (unit sphere bundle of X)
has measure 0. On S”, all geodesics are periodic (also on Zoll
manifolds); R(A\) < A\"~1 on S".



Manifolds with boundary. H. Weyl conjectured (1913) that for
the Laplacian in a domain Q of dimension n, we have

N(A) = Govoln(QA" F ervolp 1 (92)A™ " + 0 (A1) (1)

Here — corresponds to Dirichlet, and 4+ to Neumann boundary
conditions, and ¢;-s depend only on n.

Courant (1920): R(\) = O(A""log \).

Seeley (1978): R(\) = O(\™ ).

Ivrii, Melrose: proved H. Weyl’s conjecture (1), provided the set
of periodic billiard trajectories in Q has measure 0. lvrii
conjectured that this condition holds for general Euclidean
domains; that conjecture is still open.



Spectral function: Let x, y € X.

Nx,y(/\) = Z\/)Tig)\ ¢,(X)¢,(y)

If x =y, let Ny (X) := Nx(A).

Local Weyl’s law:

Nxy(A) = O(A" 1), XYy,

Nx(X) = CpA" + Rx(N), Ry(A\) = O(A"~1); Ry()) - local
remainder.

We shall discuss lower bounds for R(\), Rx(A) and Ny , ().
Notation: fi(\) = Q(f2(N)), f2 > O iff

limsup,_ . |fi(A)]/f(A) > 0. Equivalently, f(\) # o(f2())).



Lower bounds:
Theorem 1[JP] If x, y € X are not conjugate along any shortest
geodesic joining them, then

n—1

Nyy(A) = Q (AT) .

Theorem 2[JP] If x € X is not conjugate to itself along any
shortest geodesic loop, then

Other results in dimension n > 2 involve heat invariants.



Example: flat square 2-torus
/\j:47r2(n12+n§), Ny, el
¢1(X) — eZwi(n1x1+n2x2)’ X = (X1,X2)

9;()] =1 = N(A) = Ne(})

Gauss circle problem: estimate R(\).

Theorem 2 = R(\) = Q(VA) -

Hardy—-Landau bound. Theorem 2 generalizes that bound for
the local remainder.

1 3(24/3-1)
Soundararajan (2003): R(\) = Q [ Y2(egN2(oglog\) = >

(logloglog A\)5/8

Hardy’s conjecture: R(\) < A'/2¢ Ve > 0.
Huxley (2003): R(\) < Az (log \)226.



Negative curvature. Suppose sectional curvature satisfies
—KZ < K(&m) < —KZ

Theorem (Berard): Ry(\) = O(\"~"/log \)

Conjecture (Randol): On a negatively-curved surface,

R(\) = O()\%J“). Randol proved an integrated (in \) version for
Ny (X).

Theorem (Karnaukh) On a negatively curved surface

+ logarithmic improvements discussed below. Karnaukh’s
results (unpublished 1996 Princeton Ph.D. thesis under the
supervision of P. Sarnak) served as a starting point and a
motivation for our work.



Thermodynamic formalism: G! - geodesic flow on SX,
¢ € SX. Sinai-Ruelle-Bowen potential (= “unstable jacobian”)
H:SX = R: 4
HE) =
where dim E{ C T¢(SX) is the unstable subspace exponentially
contracting for the inverse flow G~ (flow-invariant, dim = n—1.)
Topological pressure P(f) of a Holder function f : SX — R
satisfies (Parry, Pollicott)

In det th|E“
t=0 ¢

eP(NT

(2#(7) exp {/7 f(”y(s),'y/(s))ds} ~ B

I(y

~ - geodesic of length /(7).



Examples:

(a): P(0) = h - topological entropy of G'. Theorem (Margulis):
#{v:1(y) < T} ~e"T/hT.

(b): P(=#H/2) > (n—1)Ky/2

(c): P(—H) =0.

Theorem 3[JP] If X is negatively-curved then for any § > 0 and
X#y

Nxy(2) = @ (37" (Iog AR 2>—6)
Since h < (n— 1)Ky, we have P(—H/2)/h > K>/(2K;y) > 0.



Theorem 4a[JP] X - negatively-curved. For any § > 0

Re(\) = Q (A% (log A)P(’Z”z’*é) n=23

Results for n > 4 : need to subtract heat invariants.
K=-1=R(\)=0 (A% (log /\)%_5)

Karnaukh, n = 2: estimate above + weaker estimates in
variable negative curvature.



Global results: R()\)
Randol, n = 2:

K=-1=R)\=20 ((log A)H) . ¥5>0.

Theorem 4b[JPT] X - negatively-curved surface (n = 2). For
anyé >0

R()) = <(Iog)\) A ).

Conjecture (folklore). On a generic negatively curved surface

R(\) = O(\)  Ve> 0.



Selberg, Hejhal: On general compact hyperbolic surfaces,

R(\) = <('°g ): ) .
\/loglog A
On compact arithmetic surfaces that correspond to quaternionic
lattices R(\) = Q (% .
Reason: exponentially high multiplicities in the length
spectrum; generically, X has simple length spectrum.

[UN10]: similar ideas are used to obtain lower bounds for
resonances of infinite area hyperbolic surfaces.



Proof of Theorem 4b: (about R())). X-compact,
negatively-curved surface.
Wave trace on X (even part):

= icos(\/xt).
i=0
Cut-off: x(t, T) = (1 —(t))p (+), where
e pc S(R),suppp C [-1,+1], p > 0, even;
o (1) € Cg°(R), ¥(t) =1,t € [~To, To], and
W(t) =0, |t > 2T,

In the sequel, T = T()\) — 00 as A — oo. Let

k(A T) = T/ \(t, T) cos(\t)dt



Key microlocal result:
Proposition 9. Let T = T(\) < elog A. Then

I(7)* cos(M(7)) - x(/(7), T)
k(A T) = o
AT /(%S:T Ty/|det(/ —Py)| +00)

where

~ - closed geodesic; /() - length; /() -primitive period; P, -
Poincaré map.

Long-time version of the “wave trace” formula of Duistermaat
and Guillemin, microlocalized to shrinking neighborhoods of
closed geodesics. Allows to isolate contribution from a growing
number of closed geodesics with /() < T(\) to (A, T) as

A, T(A) — oc.



Proof - separation of closed geodesics in phase space +
small-scale microlocalization near closed geodesics.
Dynamical lemma: Let X - compact, negatively curved
manifold. Q(v, r) - neighborhood of v in S*X of radius r
(cylinder). There exist constants B > 0, a > 0 s.t. for all closed
geodesics on X with /() € [T — a, T], the neighborhoods

Q(v, e BT) are disjoint, provided T > To.

Radius r = e~ BT is exponentially small in T, since the number
of closed geodesic grows exponentially.

Remark: on a dense set of negatively curved metrics, there is
no exponential lower bound between lengths of different closed
geodesics ([DJ]), so it is essential to work in phase space,
where the Dynamical lemma provides the required separation.
However, such separation holds for many hyperbolic manifolds,
since the generators of 71 (X) are matrices with algebraic
entries.



Our local estimates are not uniform in x, y. Need Proposition 9
to prove global estimates.
Heat trace asymptotics:

1 - i_n
—Ait {3 +
E e (47r)”/2§ a tz, t—0
i j=0

Local: K(t, x,x) = Y, e M2 (x) ~

W >0 d(x)t 2,

aj(x) - local heat invariants, a; = [, a;(x)dx.

ap(x) =1, ap = vol(X). a1(x) = %, 7(x) - scalar curvature.



“Heat kernel” estimates:

Theorem 2b[JP] If the scalar curvature

7(x) # 0,= Ry()\) = Q(\"2).

Global:[JPT] If [, 7 # 0,= R(\) = Q(A"2).

Remark: if 7(x) = 0, let kK = k(x) be the first positive number
such that the k-th local heat invariant ax(x) # 0. If

n—2k(x) > 0, then

Ry(\) = Q(A"2K00),

Similar result holds for R(\): if [ ax(x)dx # 0 and n— 2k > 0,
then
R()\) = Q(A"2K),



Oscillatory error term: subtract [(n — 1)/2] terms coming from
the heat trace:

I o I (€0 D osc
NX()\) - Z]:O (47T)gr(g—j+1) + RX ()\)

Warning: not an asymptotic expansion!

Physicists: subtract the “mean smooth part” of Ny(\).
Theorem 2¢[JP] If x € X is not conjugate to itself along any
shortest geodesic loop, then

RI®(N) = QA7)

Theorem 4c¢[JP] X - negatively-curved. Forany § > 0
R%5¢()\) = Q (A% (log \) P(fhwz)—‘s) , any n.

If n > 4 then Theorem 2b, Ry()\) = Q(\"2) gives a better
bound for Rx(\).

Global Conjecture: X - negatively-curved. For any § > 0

P(=#/2)

RO°(\) = Q ((Iog A" A ‘5> , any n.




Almost periodic properties of the remainder:
Let N(R) be the eigenvalue counting function on T2,
Heath-Brown in 1990s showed that the quantity

f(R) = (N(R) — nR?)/VR,
has a limiting distribution, i.e. that

Im meas{ R € [T,2TT] - f(R) € [a, b]} :/: P(s)ds.

where P(s) is a.c. w.r. to the Lebesgue measure, and

|P(s)| < exp(—|s|*) as |s| — oc.

Many related results for a shifted circle problem, as well as for
the remainder term on surfaces of revolution, Zoll surfaces, and
Liouville tori (metric has the form (f(x) + g(y))(dx? + dy?) were
obtained by Bleher, Dyson, Lebowitz, Minasov, Kosygin, Sinai
et al. They showed that f(R) is a B? almost periodic function in
the sense of Besikovitch.



Almost periodic properties of the remainder may be a more
general phenomenon. For e.g. negatively-curved manifolds,
Aurich, Bolte and Steiner conjectured that a (suitably
normalized) remainder has a limiting distribution that is
Gaussian. There are very few rigorous results in this direction.
The behavior of N(x, y, \)/(A\("~1)/2) was studied by Lapointe,
Polterovich and Safarov. They showed the following. Let
Ne(\, d) = (2m)~"2d="/2\"/2J,(d)\) be the “Euclidean”
spectral function; here d = d(x, y). Then there exists Cy s.t.

/ ' X.¥, ) = Ne(A\, d(x,y)) |?

N(n—1)/2 av(y) < Cu

Also, for any finite measure dv(\) on R, and for any fixed
x € M, there exists My, C M of the full measure s.t. Vy € My,

/OO |N(X>y7 )‘)|2/)\n_1d7/()\) < 0.
0



Further related results were obtained by B. Khanin and Y.
Canzani; they studied N(x, y, \) near the “diagonal” x = y.



Resonances

Joint work with F. Naud, [UNS17] also with L. Soares.

[UN10] Lower bounds for resonances of infinite area Riemann
surfaces. Journal of Analysis and PDE, vol. 3 (2010), no. 2,
207-225.

[UN12] On the critical line of convex co-compact hyperbolic
surfaces. GAFA vol. 22, no. 2 (2012), 352-368.

[UN16] Resonances and density bounds for convex co-compact
congruence subgroups of SLy(Z). Israel Jour. of Math. 2016,
vol. 213 (2016), 443-473.

[UNS17] Large covers and sharp resonances of hyperbolic
surfaces. arxiv:1710.05666



Hyperbolic manifolds

Let H™' be the usual real hyperbolic space with sectional
curvatures —1 and I a discrete group of isometries.

The orbit of any z € H"*! under -action accumulates at
infinity, the limit set is defined by A(I) := oH"™' NT.z.

A discrete group I', without elliptic elements, is called convex
co-compact iff the convex hull of the limit set is co-compact.




The quotient X = MN\H"" is an infinite volume hyperbolic
manifold called convex co-compact.
Let 6 = §(I") be the Hausdorff dimension of the limit set.
The geodesic flow on ¢; : SX — SX has a maximal compact
invariant subset 7 C SX, the "trapped set” with dimension
26 +1,

T~(AxA\D)xRmodT.

Liouville-almost all orbits of ¢; escape to infinity i.e. Vo/(7) = 0.



Laplace spectrum and resonances

Let Ay be the hyperbolic Laplacian on X = M\H".
Lax-Phillips classical results describe the [2-spectrum of Ay:

1. Point spectrum is finite and in (0, n?/4).

2. Absolutly continuous spectrum is [n? /4, +-00).

3. No embbeded eigenvalues in [n? /4, +c0).
If § > n/2, then §(n — ¢) is an eigenvalue, it’s the bottom of the
spectrum.
If § < n/2, point spectrum is empty.
Let

R(s) = (Ax — s(n—8))"": L3(X) — L3(X)

be the resolvent, meromorphic on the physical sheet
{R(s) > n/2}.



From [Mazzeo-Melrose, 1987] we know that
R(s) : C3°(X) — C™(X)

continues meromorphically to C. Poles are called resonances.
The structure of R(s) at a resonance s is given by a finite
Laurent expansion

A'(So)
R(s) = Z,: (s(n—s) i So(n — so))

+ Holomorphic,

where As(sg) = S H0) g @ g, with Agy = Sp(n — o)k
Each (non-L?) eigenfunctlon ¢k is called a resonant state.



Numerical computations for surfaces

Numerics by D. Borthwick (2012)



Numerics by D. Borthwick & T. Weich (2017)
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First resonance
From now on, we set n = 2, so that X = I'\H? is a surface.

Theorem [Patterson: 1976, 1989]. For a convex co-compact
quotient X = N\H?, the first resonance is a simple pole at

s = 0, with no other resonances on {}(s) = ¢}, in particular Ax
has eigenvalues iff § > 1.

Theorem [Ballmann-Matthiesen-Mondal: 2016]. For a convex
co-compact quotient X = MN\H2, the number of eigenvalues is at
most —x(X).

Proof generalizes results of Otal-Rosas for small eigenvalues
on compact hyperbolic surfaces. Higher dimensions??



Global upper bounds

Theorem [Guillopé-Zworski 1995, 1997] For X = I'\H?, let
Rx = {Resonances}. Then we have as t — +o0,

#{seRx : |s—1/2| <t} =<

Higher dimensions: Upper bound [Patterson-Perry 2001,
Cuevas-Vodev 2003, B 2008, Borthwick-Guillarmou 2016].
Lower bound [Perry 2003, Borthwick 2008].

Theorem [Guillopé-Lin-Zworski 2006] For o < 6, set
No, T)=#{s€Rx : RN(s) > o and [J(s) — T| < 1}.
Then for all o, as T — +oo, we have
n(o, T) = O,(T?).

Extensions to all convex co-compact hyperbolic manifolds by
[Dyatlov-Datchev 2013].



Spectral gaps

Theorem ([Naud 2005, Bourgain-Dyatlov 2017])

There exists ¢(I') > 0 such that Rx N {§ — e < R(s) <} = {d}.
Moreover, there exists €p(d) > 0 such that

RxN{d—ey < RN(s) < d} is finite.

When ¢ > 1/2, this statement follows readily from the
discreteness of the spectrum below 1/4.

Theorem [Bourgain-Dyatlov 2016]

There exists €1 > 0 such that Rx N {1/2 —e1 < R(s)} is finite.
Conjecture [JN12](Essential Spectral Gap)

Set GAP(I) =inf{c e R : Rx N {o < R(s)} is finite}. Then
GAP(IN) =4/2.

If I is cofinite, then we know (Selberg) that indeed

GAP(I') = 6/2 = 1/2. All previous results support the
conjecture (or at least are consistent with it).



Lower bounds: Guillopé, Zworski: Ve > 0, 3C, > 0, such that
Ne, (T) = Q(T').

The proof uses a wave trace formula for resonances on X and
takes into account contributions from a single closed geodesic
on X.

Question: Can one improve lower bounds taking into account
contributions from many closed geodesics on X?

Answer: Yes, [UN10].



Guillopé, Lin, Zworski: let
Dz)={ eRx:|AN—2| <1}

Then for all z : 3(z) < C, we have D(z) = O(|R(2)[%).
Let A > 0, and let W, denote the logarithmic neighborhood of
the real axis:

Wa={XeC: 3\ < Alog(1+ |RA])}

Theorem 5. Let X be a geometrically finite hyperbolic surface
of infinite area, and let 6 > 1/2. Then there exists a sequence
{z;} € Wy, R(z;) — oo such that

-1/2

D(z;) = (log [R(z;)[) 7.



Corollary: If 6 > 1/2, then Wy N Ry is different from a lattice.
Examples of I such that (') > 1/2 are easy to construct.
Pignataro, Sullivan: fix the topology of X. Denote by /(X) the
maximum length of the closed geodesics that form the
boundary of N. Then X\o(X) < C(X)I(X), where C = C(X)
depends only on the topology of X. By Patterson-Sullivan,

X <1/4 < §>1/2,s0 letting /(X) — 0 gives many examples.
Proof of Theorem 5 uses (a version of Selberg) trace formula
due to Guillopé and Zworski, and Dirichlet box principle.



Theorem 5 gives a logarithmic lower bound
5—1
D(z)) > (log |R(z;)|) 3" ¢ for an infinite sequence of disks

D(z;,1). Conjecture of Guillopé and Zworski would imply that
Ve > 0 3{z} such that D(z;) > |R(z;)|°.

Question: can one get polynomial lower bounds for some
particular groups I'?

Answer: Yes. Idea: look at infinite index subgroups of
arithmetic groups, and use methods of Selberg-Hejhal.
Theorem 6. Let I be an infinite index geom. finite subgroup of
an arithmetic group 'y derived from a quaternion algebra. Let
d(r) > 3/4. Then Ve > 0,VA > 0, there exists

{z;} € Wy, R(z;) — oo, such that

D(z))) = |R(z)|?~/%.



Key ideas: arithmetic case.
Number of closed geodesics on X:

e§T
#{’y:/(’y)<T}w5—T, T — 0.

Number of distinct closed geodesics in the arithmetic case: for
I" derived from a quaternion algebra, one has

#H{L<T:L=IR))<el2

Accordingly, for § > 1/2, there exists exponentially large
multiplicities in the length spectrum.
Distinct lengths are well-separated in the arithmetic case: for
Ii # b, we have

‘/1 _ l2| > e— max(l1,lg)/2'
Ex: My, M € SL(2,Z),ttMy # trM, then
ltrMy — trMo| = 2| cosh(l /2) — cosh(k/2)| > 1.



We also use a trace formula (Guillopé, Zworski): Let
Y € Cg°((0,+00)), and N - Nielsen region. Then (in case there
are no cusps)

Z 30 = — V(N) /0+°° COSh(t/z)z/J(t)dt

NERX 4 sin(t/2)
(V) ¢(KI())
" ;; 2sinh(KI(~)/2)’

where P = {primitive closed geodesics on X}.



It follows from a recent result of Lewis Bowen that in every
co-finite or co-compact arithmetic Fuchsian group, one can find
infinite index convex co-compact subgroups with ¢ arbitrarily
close to 1 (and in particular > 3/4). A. Gamburd considered
infinite index subgroups of SLy(Z) and constructed subgroups
An such that 6(Ay) — 1 as N — oo. It was shown in [JN10] that
subgroups 'y of Ay (of index two) provide examples of
“arithmetic” groups with §(I'y) > 3/4 for large enough N.
Related questions were also considered by Bourgain and
Kantorovich.

The results of [JN10] can probably be generalized to hyperbolic
3-manifolds.



Existence of sharp resonances

Sharp resonances are non-trivial resonances (other than ¢) that
are the closest to #(s) = min{1/2,6}.

Theorem [Guillopé-Zworski 1999] For o < 4, set

N(o,T) =#{s e Rx : R(S) > o and |J(s)| < T}.
Then for all e > 0, one can find o. such that
N(oe, T) = Q(T'7°).

Theorem ([UN12])

Foralle > 0, Rx N {§/2 — 62 — e < R(s)} is infinite. If in
addition T is arithmetic with § > 1/2 then there are infinitely
many resonances in

{R(s) >d/2—-1/4 —¢€}.



Large Galois covers
Let I be a fixed convex co-compact Fuchsian group. Any
normal subgroup I'; C T with finite index yields a Galois cover

M\H? — M\H?
with Galois group G; = I'/T;. Limit sets of I'; are the same:
A(Ty) = A(T).
Theorem 7 [Jakobson-Naud 2016] Assume that we have a

family I'; as above with |G;| — oco. Let Res; denote resonances
of X; := I;\H?, then for all ¢, > 0, as j — oo we have

C.'|Gj| < #Res;n {|s| < log'*(log |Gj|)} < |G}|'*".
Examples: congruence subgroups given by:
C SLy(Z), Tp={vy€eTl : v=Idmod p},

but also abelian covers where G; is a sequence of finite Abelian
groups (ex: cyclic covers).



Related work for covers of compact manifolds:

H. Huber, On the spectrum of the Laplace operator on compact
Riemann surfaces, Comm. Math. Helv. 57 (1982), 627-647.

R. Brooks, The spectral geometry of a tower of coverings. JDG
23:97-107, 1986. D. L. de George and N. R. Wallach. Limit
formulas for multiplicities in L?("\ G). Ann. of Math.
107:133-150, 1978.

H. Donnelly. On the spectrum of towers. Proc. Amer. Math.
Soc. 87:322-329, 1983.

E. Le Masson and T. Sahlsten. Quantum ergodicity and
Benjamini-Schramm convergence of hyperbolic surfaces.
arXiv:1605.05720v3

Abert, Bergeron et al: On the growth of L? -invariants for
sequences of lattices in Lie groups. Ann. Math. 185:711-790,
2017.



These results say (in the simplest form) that if X; is a sequence
of compact hyperbolic surfaces with Inj(X;) — oo, then for any
compact interval | C (1/4,+00),

#8Sp; M | ~ CVol(X)),

where C; is some “explicit” constant depending only on /.



Abelian Covers Here we assume that I'; <t T is given by
Fj = Kef((pj),

where ¢, : I — G; is an onto morphism, with abelian image G;.
The corresponding surface is denoted by

Xj = T\H?.
Basic example (cyclic covers). We have the identity
re ~ H'(X,2)~ 7',
forsome r > 2. Then Ny : Z" — Z/NZ given by
Mn(X1, ..., Xr) = Xy mod N,

produces a normal subgroup 'y < I' such that the covering
group is Z/NZ.



A picturesque view of cyclic covers




In the abelian case, sharp resonances/low eigenvalues
equidistribute near o.

Theorem 8 [JNS17] Assume that I' is non elementary. Assume
that G; is Abelian, and |G;| — oo. Then up to sequence
extraction, there exists a neighbourhood ¢/ > ¢ such that for all j
large, Res(X;) N4 C R and for all ¢ € Co(U),

1
lim — A) = du,
Jlulircs > eV /«pu

AeRes(X))

where 1 is an absolutely continuous measure supported on an
interval [a, 6], for some a < ¢.

In the compact and finite area case, Randol (1974) and Selberg
showed that by moving to a finite abelian cover, one can have
has many low eigenvalues in [0, 1/4] as wanted.

Theorem 8 is a quantitative version of that, which works for
resonances!



A related result:

Theorem 83: Let X = I'\H2 have at least one cusp. Assume
that G; is Abelian, and |G;| — oo. Then for all € > 0, there exists
j > 0s.t. X; = [;\H? has at least one nontrivial resonance s
with |6 — 5| <ee.



Congruence covers
Here we have

rcSLy(Z), Tp={yel : v=Idmod p},
and for all p large enough prime number, we have
[/T(p) ~ SLz(Fp).

Low eigenvalues and sharp resonances exhibit some rigidity
when |Gj| — oo.

[Gamburd, 2002]. If I C SL,(Z) is a finitely generated subgroup
and 6 > 5/6 then for all p large,

Res(I,\H?) N {R(s) > 5/6} = Res(M\H?) N {R(s) > 5/6}.

[Oh-Winter, 2016]. If I C SLx(Z) is a finitely generated
subgroup, then there exists ¢(I") such that for all p large

Res(Ip,\H?) N {R(s) > § — ¢} = Res(M\H?) N {R(s) > & — ¢}

— {5}



All of these results can be seen as part of a Generalized
Selberg’s conjecture.

Conjecture For all finitely generated subgroups I of SL,(Z), for
all e > 0 we have for all p large,

Res(Ip\H?)N{R(s) > §/2+¢} = Res(M\H?)N{R(s) > §/2+¢}.

Theorem 9 [Jakobson-Naud 2016] There exists a computable
a(l') > 0 such that for all o > §/2, we have

#Res; N {R(s) > o and |I(s)| < T} < Cr|Gp|' 020D,

here Gp = I'/Tp ~ SLo(Fp), and |Gp| = p°.



Theorem 10 [Jakobson-Naud 2017] Let I' C SL,(Z) be a
convex co-compact subgroup and 6 > 3/4. Let Res, denote
the resonances of X, := ',\HZ2. We set

Ne(p) := #Respﬂ{]i‘s(S)! < log'*(log p) and R(s) > § — % — e} :

Then for all e > 0, for all € > 0, as p — oo we have for large p.
—1 -
B < Nip) < p*,

Remark:
0—Vol(Xp) = x(Xp) = |Gp| = p°

Extensions of Theorem 10 to more general "arithmetic covers”
(arising from quaternion algebras) are doable.
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