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The psd cone: Let

PN := {A ∈MN (R) symmetric : xTAx ≥ 0 ∀x ∈ RN}

More generally, given S ⊂ C, we let

PN (S) := {A ∈MN (S) hermitian : xTAx ≥ 0 ∀x ∈ CN}

Problem: Given a function f : R→ R, when is it true that

f [A] := (f(ajk)) ∈ PN for all A ∈ PN?

What kind of functions have this property?

Main reference:
A. Belton, D. Guillot, A. Khare, M. Putinar,
Matrix positivity preservers in �xed dimension. I,

Adv. Math., 298, 2016, Pages 325�368.
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Motivation for entrywise calculus

Classical motivation:

Schoenberg's original motivation: invariant distances on

homogeneous spaces which are isometrically equivalent to a

Hilbert-space (see e.g. Bochner, Ann. Math. 1941).

Functions operating on Fourier transforms (see e.g. Helson,

Kahane, Katznelson, and Rudin, Acta Math. 1959).

Recent interest:

Applications to data science (e.g. covariance estimation).

Interpolation problems involving positive de�nite kernels

(climate science, machine learning; see e.g. Gneiting, 2013).

Semide�nite programming.

Construction of sparse probability models (see e.g. Bai and

Zhang, SIAM J. Matrix Anal. 2007).
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Covariance matrices

Σ = (σj,k)pj,k=1.
Random vector: (X1, . . . , Xp)

σj,k = Cov(Xj , Xk)

= E((Xj − E(Xj))(Xk − E(Xk)))

Estimation: x1, . . . , xn ∈ Rp.
Pancaldi et al., 2010.

Sample covariance matrix

S =
1

n− 1

n∑
j=1

(xj − x)(xj − x)T , x =
1

n

n∑
j=1

xj .

S is a p× p matrix of rank ≤ n.
Typical modern setting: p� n.

Modern approach via compressed sensing (Daubechies, Donoho, Tao,
Candes).

Uses convex optimization to obtain sparse estimates (of Σ or Σ−1) � e.g. `1
penalized estimation.

Works very well, but usually too computationally intensive in modern

applications with 100,000+ variables (genomics, climate science, �nance, etc.).
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Thresholding and regularization

Thresholding covariance/correlation matrices

True Σ =

 1 0.2 0
0.2 1 0.9
0 0.9 1

 S =

0.95 0.18 0.02
0.18 0.96 0.87
0.02 0.87 0.98



Natural to threshold small entries (thinking the variables are
independent):

S̃ =

0.95 0.18 0
0.18 0.96 0.87
0 0.87 0.98


Can be signi�cant if p = 1, 000, 000 and only, say, ∼ 1% of the

entries of the true Σ are nonzero.

Resulting matrix typically have much better properties (e.g.

non-singular).

Thresholding is equivalent to applying the function

fε(x) = x · 1|x|>ε to the entries of the matrix, for some ε > 0
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More generally, can apply a function f : R→ R to the elements of S

Σ̂ = f [S] := (f(σj,k))pj,k=1.

Highly scalable. Analysis on the cone - no optimization.
Can be used in other procedures (PCA, CCA, MANOVA, etc.).

Question: When does this procedure preserve positive (semi)de�niteness?

Critical for applications since Σ ∈ PN .
Problem: For what functions f : R→ R, does f [−] preserve PN?
References:
1. Guillot, Khare, and Rajaratnam, Preserving positivity for rank-constrained

matrices, Trans. Amer. Math. Soc, 2017.
2. Guillot, Khare, and Rajaratnam, Preserving positivity for matrices with

sparsity constraints, Trans. Amer. Math. Soc., 2016.
3. Guillot and Rajaratnam, Functions preserving positive de�niteness for sparse

matrices, Trans. Amer. Math. Soc., 2015.
4. Guillot and Rajaratnam, Retaining positive de�niteness in thresholded

matrices, Linear Algebra and its Applications, 2012.
5. Guillot, Rajaratnam, Emile-Geay, Statistical paleoclimate reconstructions via

Markov random �elds, Ann. Appl. Stat., 2015.
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Schoenberg's theorem
Horn's necessary condition

From Schur to Schoenberg

Problem: Given a function f : R→ R, when is it true that

f [A] := (f(ajk)) ∈ PN for all A ∈ PN?

Can we �nd any such functions?

Clearly, f(x) = c · x works if c ≥ 0. What else?

The Hadamard product (or Schur, or entrywise product) of two

matrices is given by: A ◦B = (ajkbjk).

Schur Product Theorem (Schur, J. Reine Angew. Math 1911)

If A,B ∈ PN , then A ◦B ∈ PN .

Proof 1: A ◦B is a principal submatrix of A⊗B.

Proof 2: If A =
∑n

j=1 λjvjv
T
j and B =

∑n
k=1 µkwkw

T
k , then

A ◦B =

n∑
j,k=1

λjµk(vjv
T
j ) ◦ (wkwk)T =

n∑
j,k=1

λjµk(vj ◦ wk)(vj ◦ wk)T .

8 / 26
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Schoenberg's theorem
Horn's necessary condition

As a consequence of the Schur product theorem:

f(x) = x2, x3, . . . , xn preserve positivity on PN for all n,N .

f(x) =
∑l

k=0 ckx
k preserves positivity if ck ≥ 0.

Taking limits: if f(x) =
∑∞

k=0 ckx
k is convergent and ck ≥ 0,

then f [−] preserves positivity. (Absolutely monotonic functions)

Important observation: The above functions preserve positivity

on PN regardless of the dimension N , i.e., on ∪N≥1PN .
Question (Pólya-Szegö, 1925): Anything else? Surprisingly, the

answer is no, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke 1942; Rudin, Duke 1959)
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Preserving positivity in �xed dimension

Schoenberg's result characterizes functions preserving positivity

entrywise on
⋃
N≥1 PN .

Question: Which functions preserve positivity entrywise on PN
for a �xed N?

In applications: dimension of the problem is known. Unnecessarily

restrictive to preserve positivity in all dimensions.

Answer known for N = 2 (Vasudeva, IJPAM 1979).

Open when N ≥ 3.
For �xed N ≥ 3, necessary condition known due to Horn (who

attributes it to Loewner):
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Horn's thesis

Theorem (Horn, Trans. Amer. Math. Soc. 1969; Guillot-Khare-Rajaratnam,
Trans. Amer. Math. Soc., 2015)

Fix I = (0, ρ) for 0 < ρ ≤ ∞, and f : I → R and N ≥ 3.
Suppose f [A] ∈ PN for A = a1N×N + uuT ∈ PN (I) with a ∈ I.

Then f ∈ CN−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ N − 3, x ∈ I.

If f ∈ CN−1(I) then this holds for all 0 ≤ k ≤ N − 1.

Implies Schoenberg's theorem on (0, ρ) via a result of Bernstein:

Theorem (Bernstein). Suppose −∞ < a < b ≤ ∞. If f : [a, b)→ R is

continuous at a and absolutely monotonic on (a, b), then f can be

extended analytically to the complex disc D(a, b− a).

11 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Schoenberg's theorem
Horn's necessary condition

Horn's thesis

Theorem (Horn, Trans. Amer. Math. Soc. 1969; Guillot-Khare-Rajaratnam,
Trans. Amer. Math. Soc., 2015)

Fix I = (0, ρ) for 0 < ρ ≤ ∞, and f : I → R and N ≥ 3.
Suppose f [A] ∈ PN for A = a1N×N + uuT ∈ PN (I) with a ∈ I.
Then f ∈ CN−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ N − 3, x ∈ I.

If f ∈ CN−1(I) then this holds for all 0 ≤ k ≤ N − 1.

Implies Schoenberg's theorem on (0, ρ) via a result of Bernstein:

Theorem (Bernstein). Suppose −∞ < a < b ≤ ∞. If f : [a, b)→ R is

continuous at a and absolutely monotonic on (a, b), then f can be

extended analytically to the complex disc D(a, b− a).

11 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Schoenberg's theorem
Horn's necessary condition

Horn's thesis

Theorem (Horn, Trans. Amer. Math. Soc. 1969; Guillot-Khare-Rajaratnam,
Trans. Amer. Math. Soc., 2015)

Fix I = (0, ρ) for 0 < ρ ≤ ∞, and f : I → R and N ≥ 3.
Suppose f [A] ∈ PN for A = a1N×N + uuT ∈ PN (I) with a ∈ I.
Then f ∈ CN−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ N − 3, x ∈ I.

If f ∈ CN−1(I) then this holds for all 0 ≤ k ≤ N − 1.

Implies Schoenberg's theorem on (0, ρ) via a result of Bernstein:

Theorem (Bernstein). Suppose −∞ < a < b ≤ ∞. If f : [a, b)→ R is

continuous at a and absolutely monotonic on (a, b), then f can be

extended analytically to the complex disc D(a, b− a).

11 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Schoenberg's theorem
Horn's necessary condition

Horn's thesis

Theorem (Horn, Trans. Amer. Math. Soc. 1969; Guillot-Khare-Rajaratnam,
Trans. Amer. Math. Soc., 2015)

Fix I = (0, ρ) for 0 < ρ ≤ ∞, and f : I → R and N ≥ 3.
Suppose f [A] ∈ PN for A = a1N×N + uuT ∈ PN (I) with a ∈ I.
Then f ∈ CN−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ N − 3, x ∈ I.

If f ∈ CN−1(I) then this holds for all 0 ≤ k ≤ N − 1.

Implies Schoenberg's theorem on (0, ρ) via a result of Bernstein:

Theorem (Bernstein). Suppose −∞ < a < b ≤ ∞. If f : [a, b)→ R is

continuous at a and absolutely monotonic on (a, b), then f can be

extended analytically to the complex disc D(a, b− a).

11 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Schoenberg's theorem
Horn's necessary condition

Horn's thesis

Theorem (Horn, Trans. Amer. Math. Soc. 1969; Guillot-Khare-Rajaratnam,
Trans. Amer. Math. Soc., 2015)

Fix I = (0, ρ) for 0 < ρ ≤ ∞, and f : I → R and N ≥ 3.
Suppose f [A] ∈ PN for A = a1N×N + uuT ∈ PN (I) with a ∈ I.
Then f ∈ CN−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ N − 3, x ∈ I.

If f ∈ CN−1(I) then this holds for all 0 ≤ k ≤ N − 1.

Implies Schoenberg's theorem on (0, ρ) via a result of Bernstein:

Theorem (Bernstein). Suppose −∞ < a < b ≤ ∞. If f : [a, b)→ R is

continuous at a and absolutely monotonic on (a, b), then f can be

extended analytically to the complex disc D(a, b− a).

11 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Schoenberg's theorem
Horn's necessary condition

Horn's thesis

Theorem (Horn, Trans. Amer. Math. Soc. 1969; Guillot-Khare-Rajaratnam,
Trans. Amer. Math. Soc., 2015)

Fix I = (0, ρ) for 0 < ρ ≤ ∞, and f : I → R and N ≥ 3.
Suppose f [A] ∈ PN for A = a1N×N + uuT ∈ PN (I) with a ∈ I.
Then f ∈ CN−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ N − 3, x ∈ I.

If f ∈ CN−1(I) then this holds for all 0 ≤ k ≤ N − 1.

Implies Schoenberg's theorem on (0, ρ) via a result of Bernstein:

Theorem (Bernstein). Suppose −∞ < a < b ≤ ∞. If f : [a, b)→ R is

continuous at a and absolutely monotonic on (a, b), then f can be

extended analytically to the complex disc D(a, b− a).

11 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices
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Main characterization
Sketch of proof: Schur polynomials

Polynomials preserving positivity in �xed dimension

Obtaining a nice characterization of functions preserving

positivity on PN for a �xed N has remained open for 76 years.

What about speci�c classes of functions?

Observation: By Horn's theorem, if

f(x) = c0 + c1x+ · · ·+ cN−1x
N−1 + cNx

N

preserves positivity on PN ((0, ρ)), then c0, . . . , cN−1 ≥ 0.

Can cN be negative?

If so, how large can cN be? Sharp bound?
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Polynomials preserving positivity in �xed dimension

Theorem (Belton, Guillot, Khare, Putinar, Adv. Math, 2016)

Fix ρ > 0 and integers M ≥ N ≥ 1, and let

f(z) =
∑N−1

j=0 cjz
j + c′zM be a polynomial with real coe�cients.

Then the following are equivalent.

1 f [−] preserves positivity on PN (D(0, ρ)).

2 The coe�cients cj satisfy either c0, . . . , cN−1, c
′ ≥ 0,

or c0, . . . , cN−1 > 0 and c′ ≥ −C(c; zM ;N, ρ)−1,
where c := (c0, . . . , cN−1), and

C(c; zM ;N, ρ) :=
N−1∑
j=0

(
M

j

)2(M − j − 1

N − j − 1

)2 ρM−j

cj
.

3 f [−] preserves positivity on rank-one matrices in PN ((0, ρ)).
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Consequences

1 Quantitative version of Schoenberg's theorem in �xed

dimension for polynomials.

2 The theorem provides an exact characterization of polynomials

of degree N that preserve positivity on PN .

3 Surprisingly, the sharp bound on the negative threshold is

obtained on rank 1 matrices with positive entries.

4 Can be generalized to domains (0, ρ) ⊂ K ⊂ D(0, ρ).

5 Provides an example of an analytic functions that preserve

positivity on PN , but not on PN+1.
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6 Can use the theorem to obtain bounds on the coe�cients of

analytic functions preserving positivity.

7 The allowed signs in the coe�cients of polynomials preserving

positivity on PN were characterized by A. Khare and T. Tao.

Theorem.(A. Khare, T. Tao, 2017)
Let N > 0 and 0 ≤ n0 < n1 < · · · < nN−1 be natural

numbers, and for each M > nN−1, let εM ∈ {−1, 0, 1} be a

sign. Let 0 < ρ <∞, and let cn0 , . . . , cnN−1 be positive reals.

Then there exists a convergent power series

f(x) = cn0x
n0 + cn1x

n1 + · · ·+ cnN−1x
nN−1 +

∑
M>nN−1

cMx
M

on (0, ρ) that is an entrywise positivity preserver on PN ((0, ρ)),
such that for each M > nN−1, cM has the sign εM .
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Sketch of the proof of the main result

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let c0, . . . , cN−1, c
′ ∈ R and M ≥ N ≥ 1. If f(z) =

∑
j cjz

j + c′zM , TFAE:

1 f [−] preserves positivity on PN (D(0, ρ)).

2 Either cj , c
′ ≥ 0 or c0, . . . , cN−1 > 0 > c′ ≥ −C(c; zM ;N, ρ)−1.

3 f [−] preserves positivity on P1
N ((0, ρ)).

Sketch of the Proof of (3) =⇒ (2):

Assume c0, . . . , cN−1 > 0 > c′.
Notation: A◦k := (aki,j).
Study the determinants of linear pencils

p(t) = pt[A] := det
(
t(c01N×N + c1A+ · · ·+ cN−1A

◦(N−1))−A◦M
)

for rank-one matrices A = uvT , with t = |c′|−1.
Problem: Find smallest t such that p(t) ≥ 0 for all A = uuT .
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Schur polynomials

Given an integer partition (i.e., a non-increasing N -tuple of

non-negative integers, nN ≥ · · · ≥ n1), the corresponding Schur
polynomial over a �eld F is the unique polynomial extension to FN
of

s(nN ,...,n1)(x1, . . . , xN ) :=
det(x

nj+j−1
i )

det(xj−1i )

for pairwise distinct xi ∈ F.

The denominator is precisely the Vandermonde determinant

∆N (x1, . . . , xN ) := det(xj−1i ) =
∏

1≤i<j≤N
(xj − xi).

Weyl Character Formula in Type A:

s(nN ,...,n1)(1, . . . , 1) =
∏

1≤i<j≤N

nj − ni + j − i
j − i

.
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Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi-Trudi type identity for pt.

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let M ≥ N ≥ 1 be integers, and c0, . . . , cN−1 ∈ F× be non-zero scalars
in any �eld F. De�ne the polynomial

pt(x) := t(c0 + · · ·+ cN−1x
N−1)− xM ,

and the partition

µ(M,N, j) := (M −N + 1, 1, . . . , 1, 0, . . . , 0).

(N − j − 1 ones, j zeros). The following identity holds for all u,v ∈ FN :

det pt[uv
T ] =

tN−1∆N (u)∆N (v)

N−1∏
j=0

cj ×
(
t−

N−1∑
j=0

sµ(M,N,j)(u)sµ(M,N,j)(v)

cj

)
.
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The negative threshold

Proof of (3) =⇒ (2).

Suppose f [−] : P1
N ((0, ρ))→ PN and c0, . . . , cN−1 > 0 > c′.

With pt(x) := t(c0 + · · ·+ cN−1x
N−1)− xM and t := |c′|−1,

0 ≤ det pt[uu
T ]

tN−1∆N (u)2c0 · · · cN−1
= t −

N−1∑
j=0

sµ(M,N,j)(u)2

cj
.

sµ(M,N,j)(u) is maximized on [0, α]N at u = (α, . . . , α).

Letting all (distinct) ui →
√
ρ−,

t = |c′|−1 ≥
N−1∑
j=0

sµ(M,N,j)(
√
ρ, . . . ,

√
ρ)2

cj
= C(c; zM ;N, ρ).

Need Weyl Character Formula, Jacobi-Trudi identities, ...

For more details: Belton, Guillot, Khare, Putinar, Matrix positivity

preservers in �xed dimension. I, Advances in Mathematics, 2016.
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Reformulation: Linear matrix inequalities (LMI)

For A ∈ PN and f as in the Theorem, note:

f [A] = c01N×N + · · ·+ cN−1A
◦(N−1) − cMA◦M , A◦k := (akij).

f [A] is positive semide�nite ⇔ linear matrix inequality

cMA
◦M ≤ c01N×N + c1A+ · · ·+ cN−1A

◦(N−1),

Bound higher powers using lower ones. E.g.

A◦M ≤ c(1N×N +A+ · · ·+A◦(N−1))

⇐⇒ c1N×N + cA+ · · ·+ cA◦(N−1) −A◦M ≥ 0

⇐⇒ 1N×N +A+ · · ·+A◦(N−1) − 1

c
A◦M ≥ 0

For A ∈ PN (D(0, 1)), this holds with

c =
N−1∑
j=0

(
M

j

)2(
M − j − 1

N − j − 1

)2

(sharp bound).

Special Case M = N : c =
∑N−1
j=0

(
N
j

)2
=
(
2N
N

)
− 1 ∼ 4N√

πN
.
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Preserving positivity on Hankel matrices (of all dimensions).

Let µ a non-negative measure on R, with moments of all orders

sk(µ) = sk :=

∫
R
xk dµ, s(µ) := (sk(µ))k≥0.

Consider the Hankel matrix associated to µ:

Hµ :=


s0 s1 s2 · · ·
s1 s2 s3 · · ·
s2 s3 s4 · · ·
...

...
...

. . .

 .

Theorem (Hamburger). A sequence (sk)k≥0 is the moment sequence of
a positive Borel measure on R if and only if its associated Hankel
matrices are positive semide�nite.

Interesting consequence: f preserve positivity (entrywise) on Hankel
matrices i� it maps moment sequences to themselves:

f(sk(µ)) = sk(σµ) (k ≥ 0)

for some positive Borel measure sµ.
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Theorem (Belton, Guillot, Khare, Putinar; preprint). Let

f : R→ R. The following are equivalent:

1. f maps moment sequences of measures supported on [−1, 1]
into themselves.

2. f [A] ∈ PN for all A ∈ PN ∩Hankel and all n ≥ 1.

3. f [A] ∈ PN for all A ∈ PN .
4. f is the restriction to R of an entire function f(z) =

∑∞
j=0 cjz

j

with cj ≥ 0.

Can prove several variants for measure with other supports.

To illustrate the techniques used in the proof, we will prove the

following simpler result.

Proposition Suppose f(sk(µ)) = sk(σµ) for all k ≥ 0 and all µ
with suppµ ⊆ [−1, 1]. Then f is continuous.
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Proof of the Proposition

Step 1. f is continuous on (0,∞). Let 0 < x ≤ y.(
y x
x y

)
∈ P2 =⇒

(
f(y) f(x)
f(x) f(y)

)
∈ P2 =⇒ f(x) ≤ f(y).

Thus, f is monotone and so is Borel measurable.
Next, for a, b ∈ (0,∞),(

a
√
ab√

ab b

)
∈ P2 ⇒

(
f(a) f(

√
ab)

f(
√
ab) f(b)

)
∈ P2 ⇒ f(

√
ab)2 ≤ f(a)f(b),

i.e., f is multiplicatively mid-convex.

Equivalently, we have shown that log f(ex) is mid-convex and

measurable.

This implies log f(ex) is convex and so f is continuous on (0,∞).
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Step 2. f is continuous on (−∞, 0].

Key Idea: If p(t) = a0 + a1t+ · · ·+ adt
d ≥ 0 on [−1, 1]. Then

0 ≤
∫ 1

−1
p(t)dσµ(t) =

d∑
k=0

aksk(σµ)

=

d∑
k=0

akf(sk(µ)).

We discover properties of f by applying the above identity for

carefully chosen µ and p.
Let p±(t) = (1± t)(1− t2). Then p± ≥ 0 on [−1, 1].
Fix v0 ∈ (0, 1), let b, β ≥ 0 and de�ne

a := β + bv0, µ := aδ−1 + bδv0 .
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Key identity: 0 ≤
∑d

k=0 akf(sk(µ)).

We compute the �rst moments of µ:

k sk(µ)

0 a+ b

1 −a+ bv0
2 a+ bv20
3 −a+ bv30

Using the Key identity, we obtain:

f(a+ b)− f(a+ bv20) ≥ ±
(
f(−a+ bv0)− f(−a+ bv30)

)
.

Equivalently,

f(β+b+bv0)−f(β+bv0+bv20) ≥
∣∣f(−β)− f(−β + b(v30 − v0))

∣∣ .
Letting b→ 0+ we obtain that f is left-continuous at −β.
Can use a similar argument to obtain right-continuity.

25 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Hankel matrices
Real powers

Key identity: 0 ≤
∑d

k=0 akf(sk(µ)).
We compute the �rst moments of µ:

k sk(µ)

0 a+ b

1 −a+ bv0
2 a+ bv20
3 −a+ bv30

Using the Key identity, we obtain:

f(a+ b)− f(a+ bv20) ≥ ±
(
f(−a+ bv0)− f(−a+ bv30)

)
.

Equivalently,

f(β+b+bv0)−f(β+bv0+bv20) ≥
∣∣f(−β)− f(−β + b(v30 − v0))

∣∣ .
Letting b→ 0+ we obtain that f is left-continuous at −β.
Can use a similar argument to obtain right-continuity.

25 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Hankel matrices
Real powers

Key identity: 0 ≤
∑d

k=0 akf(sk(µ)).
We compute the �rst moments of µ:

k sk(µ)

0 a+ b

1 −a+ bv0
2 a+ bv20
3 −a+ bv30

Using the Key identity, we obtain:

f(a+ b)− f(a+ bv20) ≥ ±
(
f(−a+ bv0)− f(−a+ bv30)

)
.

Equivalently,

f(β+b+bv0)−f(β+bv0+bv20) ≥
∣∣f(−β)− f(−β + b(v30 − v0))

∣∣ .
Letting b→ 0+ we obtain that f is left-continuous at −β.
Can use a similar argument to obtain right-continuity.

25 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Hankel matrices
Real powers

Key identity: 0 ≤
∑d

k=0 akf(sk(µ)).
We compute the �rst moments of µ:

k sk(µ)

0 a+ b

1 −a+ bv0
2 a+ bv20
3 −a+ bv30

Using the Key identity, we obtain:

f(a+ b)− f(a+ bv20) ≥ ±
(
f(−a+ bv0)− f(−a+ bv30)

)
.

Equivalently,

f(β+b+bv0)−f(β+bv0+bv20) ≥
∣∣f(−β)− f(−β + b(v30 − v0))

∣∣ .

Letting b→ 0+ we obtain that f is left-continuous at −β.
Can use a similar argument to obtain right-continuity.

25 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Hankel matrices
Real powers

Key identity: 0 ≤
∑d

k=0 akf(sk(µ)).
We compute the �rst moments of µ:

k sk(µ)

0 a+ b

1 −a+ bv0
2 a+ bv20
3 −a+ bv30

Using the Key identity, we obtain:

f(a+ b)− f(a+ bv20) ≥ ±
(
f(−a+ bv0)− f(−a+ bv30)

)
.

Equivalently,

f(β+b+bv0)−f(β+bv0+bv20) ≥
∣∣f(−β)− f(−β + b(v30 − v0))

∣∣ .
Letting b→ 0+ we obtain that f is left-continuous at −β.
Can use a similar argument to obtain right-continuity.

25 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Hankel matrices
Real powers

References:

1. Belton, Guillot, Khare, Putinar, Matrix positivity preservers in �xed dimension. I,
Adv. Math., 2016.

2. Guillot, Khare, and Rajaratnam, Preserving positivity for rank-constrained matrices,
Trans. Amer. Math. Soc, 2017.

3. Guillot, Khare, and Rajaratnam, Preserving positivity for matrices with sparsity

constraints, Trans. Amer. Math. Soc., 2016.

4. Guillot and Rajaratnam, Functions preserving positive de�niteness for sparse

matrices, Trans. Amer. Math. Soc., 2015.

5. Guillot and Rajaratnam, Retaining positive de�niteness in thresholded matrices,
Linear Algebra and its Applications, 2012.

6. Guillot, Rajaratnam, Emile-Geay, Statistical paleoclimate reconstructions via

Markov random �elds, Ann. Appl. Stat., 2015.

7. Guillot, Khare, Rajaratnam, Critical Exponents of Graphs, J. Combin. Theory
Ser. A, 2016.

8. Belton, Guillot, Khare, Putinar, Moment-sequence transforms, submitted, 2016,

arXiv:1610.05740.

Work partially supported by the Simons foundation, a University of Delaware Research
Foundation grant, and a University of Delaware Research Foundation strategic initiative grant.

Happy Birthday Tom!!! 26 / 26



Motivation
Functions preserving positivity

Results in �xed dimension
Structured matrices

Hankel matrices
Real powers

Critical exponents

Recall that f(x) = xk preserves positivity on ∪N≥1PN when

k ∈ N.
What about other powers f(x) = xα for α ∈ R?

Example. Suppose

A =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

 .

Raise each entry to the αth power for some α > 0.

When is the resulting matrix positive semide�nite?
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Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let N ≥ 2. Then:

1 f(x) = xα preserves positivity on PN ((0,∞)) if α ≥ N − 2.

2 If α < N − 2 is not an integer, there is a matrix

A = (ajk) ∈ PN such that A◦α := (aαjk) 6∈ PN .

In other words, f(x) = xα preserves positivity on PN ((0,∞)) if

and only if α ∈ N ∪ [N − 2,∞).

Critical exponent: N − 2 = smallest α0 such that α ≥ α0

preserves positivity on PN .

So for A =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

, all powers α ∈ N∪ [3,∞) work.

Can we do better?
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FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but very

ingenious.

Background: Let M be a block matrix. Let

M :=

(
A B
C D

)
A ∈Mm, D ∈Mn

Assuming D is invertible, the Schur complement of D in M is

M/D := A−BD−1C.
Important properties:

1 detM = detD · det(M/D).
2 M ∈ Pn+m if and only if D ∈ Pn and M/D ∈ Pm.

Proof:

M =

(
Im BD−1

0 In

)(
A−BD−1C 0

0 D

)(
Im 0

D−1C In

)
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FitzGerald and Horn's result (Sketch of proof)

Theorem: (FitzGerald and Horn, 1977) Let n ≥ 2. Then:
1 f(x) = xα preserves positivity on Pn((0,∞)) if α ≥ n− 2.
2 If α < n− 2 is not an integer, there is a matrix A ∈ Pn such

that A◦α 6∈ Pn.
Use Induction. n = 2 is easy.

Now,

A =

(
B ξ
ξT ann

)
ζ :=

1
√
ann

ξ.

Note that

A/ann = B − ζζT ∈ Pn−1.
Goal: Show that

A◦α/aαnn = B◦α − ζ◦αζ◦αT

= B◦α − (ζζT )◦α ∈ Pn−1.
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FitzGerald and Horn's result (Sketch of proof)

Theorem: (FitzGerald and Horn, 1977) Let n ≥ 2. Then:

1 f(x) = xα preserves positivity on Pn((0,∞)) if α ≥ n− 2.

2 If α < n− 2 is not an integer, there is a matrix A ∈ Pn such that
A◦α 6∈ Pn.

Proof of (1). By elementary calculus, for any x, y ∈ R,

f(x)− f(y) =

∫ 1

0
(x− y)f ′(λx+ (1− λ)y) dλ.
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FitzGerald and Horn's result (Sketch of proof)

Theorem: (FitzGerald and Horn, 1977) Let n ≥ 2. Then:

1 f(x) = xα preserves positivity on Pn((0,∞)) if α ≥ n− 2.

2 If α < n− 2 is not an integer, there is a matrix A ∈ Pn such that
A◦α 6∈ Pn.

Proof of (1). By elementary calculus, for any x, y ∈ R,

f(x)− f(y) =

∫ 1

0
(x− y)f ′(λx+ (1− λ)y) dλ.

Apply the identity entrywise:

B◦α − (ζζT )◦α =

∫ 1

0
(B − ζζT ) ◦ (λB + (1− λ)ζζT )◦(α−1) dλ.

Done by induction.
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Critical exponent of graphs

Given G = (V,E) with V = {1, . . . , N}, de�ne a subset of PN by

PG := {A ∈ PN : ajk = 0 if (j, k) 6∈ E and j 6= k}.

Example:

∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗


De�ne the set of powers preserving positivity for G:

HG := {α ≥ 0 : A◦α ∈ PG for all A ∈ PG([0,∞))}
CE(G) := smallest α0 s.t. xα preserves positivity on PG,∀α ≥ α0.

Problem 1: Compute HG and CE(G).
(FitzGerald-Horn studied the case G = KN .)

Problem 2: How does the structure of G relate to the set of powers

preserving positivity?
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Some preliminary observations:

1 If G has n vertices then α ≥ n− 2 preserves positivity.

2 If G contains Km as an induced subgraph, then α < m− 2
does not preserve positivity (α 6∈ N).

Consequence: m− 2 ≤ CE(G) ≤ n− 2.

Question: Is the critical exponent of G equal to the clique number

minus 2?

Answer: No. Counterexample: G = K
(1)
4 (K4 minus a chord).

Clearly, the maximal clique is K3. However,

we can show that H
K

(1)
4

= {1} ∪ [2,∞).
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Theorem. (Guillot, Khare, Rajaratnam, 2016) CE(T ) = 1 for any tree T .

Trees are graphs with no cycles of length n ≥ 3.

De�nition: A graph is chordal if it does not contain an induced cycle of
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Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016)

Let G be any chordal graph with at least 2 vertices and let r be the

largest integer such that either Kr or K
(1)
r is an induced subgraph

of G. Then
HG = N ∪ [r − 2,∞).

In particular, CE(G) = r − 2.

Theorem.(Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let

G = Cn (cycle of length n) or G a bipartite graph. Then

HG = [1,∞).

Theorem.(Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let

G be any bipartite graph. Then HG = [1,∞).

Note: 1 is the largest integer such that Kr or K
(1)
r is contained in Cn or

in a bipartite!

Reference: Guillot, Khare, Rajaratnam, Critical Exponents of Graphs, J.

Combin. Theory Ser. A, 2016.
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