Numerical ranges of restricted shifts, norms of TTOs, and the role of Banach algebras

Pamela Gorkin

Bucknell University

Conference in honor of Tom Ransford 2018

4 m + 4 m

The main ingredients

メロトメ 御 トメ 君 トメ 君 トッ

重

1. The numerical range

メロメ メ都 メメ きょくきょう

E

The numerical range of A is $W(A) = \{ \langle Ax, x \rangle : ||x|| = 1 \}.$

Why the numerical range?

イロメ イ部メ イヨメ イヨメー

E

 $2Q$

The numerical range of A is $W(A) = \{ \langle Ax, x \rangle : ||x|| = 1 \}.$

Why the numerical range?

Contains eigenvalues of $A : \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle = \lambda$.

イロメ イ押 トラ ラトラ チャー

 \equiv

 $2Q$

The numerical range of A is $W(A) = \{ \langle Ax, x \rangle : ||x|| = 1 \}.$

Why the numerical range?

Contains eigenvalues of $A : \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle = \lambda$.

Compare zero matrix and $n \times n$ Jordan block: (Here's the 2×2)

$$
A_1=\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right], A_2=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right].
$$

イロメ イ押 トラ ラトラ チャー

 Ω

The numerical range of A is $W(A) = \{ \langle Ax, x \rangle : ||x|| = 1 \}.$

Why the numerical range?

Contains eigenvalues of $A : \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle = \lambda$.

Compare zero matrix and $n \times n$ Jordan block: (Here's the 2×2)

$$
A_1=\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right], A_2=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right].
$$

$$
W(A_1)=\{0\}, W(A_2)=\{z: |z|\leq 1/2\}.
$$

イロメ イ押 トラ ラトラ チャー

 Ω

メロトメ 御 トメ 君 トメ 君 トッ 君

Michel Crouzeix 2006: "Open problems on the numerical range and functional calculus"

Conjecture (2004): For any polynomial $p \in \mathbb{C}[z]$ and A an $n \times n$ matrix the inequality holds:

 $\lVert p(A) \rVert \leq C$ max $\lvert p(z) \rvert_{z \in W(A)}.$

The best constant should be $C = 2$.

Let
$$
p(z) = z
$$
 and $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then

LHS = 1 and RHS =
$$
C \cdot 1/2
$$
.

 $\lVert p(A) \rVert \leq C$ max $\lvert p(z) \rvert_{z \in W(A)}.$

The best constant should be $C = 2$.

Examples of what is known

1 (Crouzeix) Best constant is between 2 and 11.08.

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

 \rightarrow \pm \rightarrow

 Ω

 $\lVert p(A) \rVert \leq C$ max $\lvert p(z) \rvert_{z \in W(A)}.$

The best constant should be $C = 2$.

Examples of what is known

O (Crouzeix) Best constant is between 2 and 11.08.

 \bullet (Badea, Crouzeix, Delyon) If $W(A)$ is a disk, this is known.

マーティ ミュース ミュ

 $\lVert p(A) \rVert \leq C$ max $\lvert p(z) \rvert_{z \in W(A)}.$

The best constant should be $C = 2$.

Examples of what is known

- **O** (Crouzeix) Best constant is between 2 and 11.08.
- **2** (Badea, Crouzeix, Delyon) If $W(A)$ is a disk, this is known.
- **3** (Glader, Kurula, Lindström) For tridiagonal 3×3 matrices.

 $\lVert p(A) \rVert \leq C$ max $\lvert p(z) \rvert_{z \in W(A)}.$

The best constant should be $C = 2$.

Examples of what is known

- **O** (Crouzeix) Best constant is between 2 and 11.08.
- **2** (Badea, Crouzeix, Delyon) If $W(A)$ is a disk, this is known.
- **3** (Glader, Kurula, Lindström) For tridiagonal 3×3 matrices.
- \bigcirc (D. Choi) 3×3 matrices that are "nearly" Jordan blocks.

マーター マーティング

 $\lVert p(A) \rVert \leq C$ max $\lvert p(z) \rvert_{z \in W(A)}.$

The best constant should be $C = 2$.

Examples of what is known

- **O** (Crouzeix) Best constant is between 2 and 11.08.
- \bullet (Badea, Crouzeix, Delyon) If $W(A)$ is a disk, this is known.
- **3** (Glader, Kurula, Lindström) For tridiagonal 3×3 matrices.
- \bigcirc (D. Choi) 3×3 matrices that are "nearly" Jordan blocks.
- \bullet (C: Cher, \circ \circ is matrices that are meanly constant sidence.
 3 (Crouzeix, Palencia) Best constant is between 2 and $1 + \sqrt{2}$.

- オート オート オート

A($Ω$) continuous functions on $\overline{Ω}$ holomorphic on $Ω$.

Lemma

Let T be a bounded operator and Ω be a bounded open set containing the spectrum of T. Suppose that for each $f \in A(\Omega)$ there exists $g \in A(\Omega)$ such that

$$
\|g\|_{\Omega}\leq\|f\|_{\Omega} \text{ and } \|f(T)+g(T)^{\star}\|\leq 2\|f\|_{\Omega}.
$$

Then

$$
||f(T)|| \leq (1+\sqrt{2})||f||_{\Omega}, f \in A(\Omega).
$$

Ransford and Schwenninger gave a short proof of this lemma and κ anstord and Schwenninger gave a short proot of this len
show that in this lemma, the constant $(1+\sqrt{2})$ is sharp.

Administration

∽≏ດ

Numerical range basics

Theorem (Elliptical range theorem.)

The numerical range of a 2×2 matrix A is an elliptical disk with foci at the eigenvalues a and b of A and minor axis of length

 $(tr(A^{\star}A) - |a|^2 - |b|^2)^{1/2}.$

Use computations or envelopes.

Theorem (Toeplitz Hausdorff theorem.)

The numerical range of a matrix is convex.

2. Projective Geometry

メロメ メ都 メメ きょくきょう

E

Idea: Find the maximum eigenvalue of $(A + A^*)/2$. Then rotate A and repeat.

Theory of envelopes and projective geometry

 \leftarrow \Box

つへへ

Theorem

(Poncelet's Porism, ellipse version) Given one ellipse inside another, if there exists one circuminscribed (simultaneously inscribed in the outer and circumscribed on the inner) n -gon, then any point on the boundary of the outer ellipse is the vertex of some circuminscribed n-gon.

∽≏ດ

メロトメ 倒 トメ ミトメ ミトリ (音)

メロトメ 倒 トメ ミトメ ミトリ (音)

メロトメ 倒 トメ ミトメ ミトリーミ

メロトメ 倒 トメ ミトメ ミトリ (音)

In honor of the 200th anniversary of Poncelet's theorem, Halbeisen and Hungerbühler gave a beautiful and accessible proof of the theorem.

 \leftarrow \Box

 \sim

 $2Q$

3. Operator theory and Blaschke products

 $($ \Box $)$ $($ \Box $)$ $($ \Box $)$ $($ \Box $)$

 \rightarrow \equiv \rightarrow E

Blaschke products

$$
B(z) = \lambda \prod_{j=1}^{n} \frac{z - a_j}{1 - \overline{a_j}z}, \text{ where } a_j \in \mathbb{D}, |\lambda| = 1.
$$

 H^2 is the Hardy space; $f(z) = \sum_{n=0}^{\infty} a_n z^n$ where $\sum_{n=0}^{\infty} |a_n|^2 < \infty$.

An inner function I is a bounded analytic function on D with radial $\textsf{limits} |I^{\star}| = 1$ a.e.

S is the shift operator $S: H^2 \to H^2$ defined by $[S(f)](z) = zf(z);$ The adjoint is $[S^*(f)](z) = (f(z) - f(0))/z$.

Theorem (Beurling's theorem)

The nontrivial invariant subspaces under S are $UH^2 = \{Uh : h \in H^2\}$, where U is an inner function.

Subspaces invariant under the adjoint, S^\star are $K_U := H^2 \ominus U H^2.$

イロメ イ母メ イヨメ イヨメー

 Ω

What's the matrix representing S_B , B Blaschke?

$$
B(z) = \lambda \prod_{j=1}^{n} \frac{z - a_j}{1 - \overline{a_j} z}, \text{ where } a_j \in \mathbb{D}, |\lambda| = 1.
$$

 $K_B := H^2 \ominus BH^2$.

Consider K_B where $B(z) = \prod_{j=1}^n$ z−a^j $rac{z-a_j}{1-\overline{a_j}z}$.

Consider the Szegö kernel: $g_a(z) = \frac{1}{1 - \overline{a}z}$.

つくい

What's the matrix representing S_B , B Blaschke?

$$
B(z) = \lambda \prod_{j=1}^{n} \frac{z - a_j}{1 - \overline{a_j} z}, \text{ where } a_j \in \mathbb{D}, |\lambda| = 1.
$$

 $K_B := H^2 \ominus BH^2$.

Consider K_B where $B(z) = \prod_{j=1}^n$ z−a^j $rac{z-a_j}{1-\overline{a_j}z}$.

Consider the Szegö kernel: $g_a(z) = \frac{1}{1 - \overline{a}z}$.

If a_j are distinct, $K_B = \text{span}\{g_{a_j} : j = 1, \ldots, n\}.$

Consider the compression of the shift: $S_B: K_B \rightarrow K_B$ defined by

$$
S_B(f)=P_BS(f),
$$

where P_B is the orthogonal projection from H^2 onto \mathcal{K}_B .

Applying Gram-Schmidt to the kernels we get the Takenaka-Malmquist basis: Let $b_a(z) = \frac{z-a}{1-\overline{a}z}$ and

$$
\{\frac{\sqrt{1-|a_1|^2}}{1-\overline{a_1}z},b_{a_1}\frac{\sqrt{1-|a_2|^2}}{1-\overline{a_2}z},\ldots\prod_{j=1}^{k-1}b_{a_j}\frac{\sqrt{1-|a_k|^2}}{1-\overline{a_k}z},\ldots\}.
$$

The $n \times n$ matrix A is $\sqrt{ }$ $a_1 \sqrt{1-|a_1|^2}\sqrt{1-|a_2|^2} \dots \sqrt{\prod_{k=2}^{n-1}(-\overline{a_k})}\sqrt{1-|a_1|^2}\sqrt{1-|a_n|^2}$ 0 a_2 ... $(\prod_{k=3}^{n-1}(-\overline{a_k}))\sqrt{1-|a_2|^2}\sqrt{1-|a_n|^2}$ 0 0 0 a_n 1 $\begin{array}{c} \hline \end{array}$

What's the connection?

メロメ メ都 メメ きょうくきょう

重

$$
\mathit{U}_{\lambda} = \left[\begin{array}{cc} A & \text{stuff}(\lambda) \\ \text{stuff}(\lambda) & \text{stuff}(\lambda) \end{array} \right]
$$

- **1** The eigenvalues of U_{λ} are the values $zB(z)$ maps to λ ;
- \bullet $W(U_{\lambda})$ is the polygon formed with the points $zB(z)$ identifies.
- $\bullet \ \ W(A) \subseteq \bigcap \{\, W(\, U_{\lambda}) : \lambda \in \mathbb{D} \}.$ We'll see why this is true in a moment. First let's talk about why we care about this.

RANGER REA

つくい
What do unitary dilations of an operator T know about T ?

イロト イ部 トイミト イミト

E

What do unitary dilations of an operator T know about T ? Specifically, is $W(A)=\bigcap \{W(U_\lambda): U$ a unitary dilation of $A\}$

a mille

- オ海 ト オ ヨ ト オ ヨ ト

 \equiv

$$
U_{\lambda} = \left[\begin{array}{cc} A & \text{stuff}(\lambda) \\ \text{stuff}(\lambda) & \text{stuff}(\lambda) \end{array} \right]
$$

 $W(A) \subseteq \bigcap \{W(U_\lambda): \lambda \in \mathbb{D}\}.$

Fact: Because rank $(I - S_{\mathcal{B}}^* S_{\mathcal{B}}) = \text{rank}(I - S_{\mathcal{B}} S_{\mathcal{B}}^*) = 1$, these operators have unitary 1-dilations. So we've added one row and one column.

Let $V = [I_n, 0]$ be $n \times (n+1)$. Then $A = VU_\lambda V^t$ and $V^t X = \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix}$ 0 $\Big]$ and $||V^t x|| = 1.$

$$
\langle Ax, x \rangle = \langle VU_{\lambda} V^{t} x, x \rangle = \langle U_{\lambda} V^{t} x, V^{t} x \rangle.
$$

 $||V^t x|| = 1$ implies the containment.

イ押 トラ ミトラ ミュート

 Ω

For each $\lambda \in \mathbb{T}$, we get a unitary 1-dilation of S_B :

$$
b_{ij} = \begin{cases} a_{ij} & \text{if } 1 \leq i, j \leq n, \\ \lambda \big(\prod_{k=1}^{j-1} \big(-\overline{a_k} \big) \big) \sqrt{1 - |a_j|^2} & \text{if } i = n+1 \text{ and } 1 \leq j \leq n, \\ \big(\prod_{k=i+1}^{n} \big(-\overline{a_k} \big) \big) \sqrt{1 - |a_i|^2} & \text{if } j = n+1 \text{ and } 1 \leq i \leq n, \\ \lambda \prod_{k=1}^{n} \big(-\overline{a_k} \big) & \text{if } i = j = n+1. \end{cases}
$$

The eigenvalues of U_{λ} are the values for which $zB(z) = \lambda$, and that's all we need to find $W(U_\lambda)$ (=convex hull of the eigenvalues).

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

ALC: NO

These unitary dilations know everything

The class S_n : Matrices with no eigenvalues of modulus 1, contractions (completely non-unitary contractions) with rank $(I - T^*T) = 1$.

Theorem (Gau, Wu)

For $T \in S_n$ and any point $\lambda \in \mathbb{T}$ there is an $(n+1)$ -gon inscribed in $\mathbb T$ that circumscribes the boundary of $W(T)$ and has λ as a vertex.

The points where $zB(z) = \lambda$ are the vertices of a polygon. When we intersect the convex hull of these vertices we get $W(S_B)$:

$$
W(S_B) = \bigcap \{ W(U) : U \text{ unitary dilation of } S_B \}.
$$

イロメ マ桐 レマ ティスティ

Connecting points identified by $zB(z)/$ looking at $W(U_\lambda)$

 $4.49 \times 4.72 \times$

 \rightarrow \pm \rightarrow

 $2Q$

Pamela Gorkin [Numerical ranges of compressed shifts](#page-0-0)

 \leftarrow \Box

Upshot

It's hard to say something about the shape of the numerical range for high degree...as in degree \geq 3. So we ask an easier question.

The numerical radius of T is

$$
r(T) = \sup\{|\lambda| : \lambda \in W(T)\} = \sup_{\|x\|=1} |\langle Tx, x\rangle|.
$$

a mills.

 \mathcal{A} and \mathcal{A} in \mathcal{A} . The \mathcal{A}

 \rightarrow \pm \rightarrow

E

Upshot

It's hard to say something about the shape of the numerical range for high degree...as in degree \geq 3. So we ask an easier question.

The numerical radius of T is

$$
r(T) = \sup\{|\lambda| : \lambda \in W(T)\} = \sup_{\|x\|=1} |\langle Tx, x\rangle|.
$$

$$
r(T)\leq \|T\|\leq 2r(T).
$$

When $r(T)$ \leq 1 we have a local version:

Theorem (Klaja, Mashreghi, Ransford)

If T is an operator on a Hilbert space H with $r(T) \leq 1$, then

$$
||\mathcal{T}x||^2 \leq 2 + 2\sqrt{1 - |\langle \mathcal{T}x, x \rangle|^2} \qquad (x \in \mathcal{H}, ||x|| \leq 1).
$$

So what is the numerical radius of S_B ?

メロトメ 御 トメ 君 トメ 君 トッ

 \equiv

So what is the numerical radius of S_B ? Only really interesting when B is finite.

 $($ \Box $)$ $($ \Box $)$ $($ \Box $)$ $($ \Box $)$

(大震 トー E

So what is the numerical radius of S_B ? Only really interesting when B is finite.

(Gaaya, 2012) Studied the numerical radius of S_B when

$$
B(z)=\left(\frac{z-\alpha}{1-\overline{\alpha}z}\right)^n.
$$

Showed $W(S_B)$ is symmetric; computed bounds on $r(S_B)$.

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B}

All Brakers

So what is the numerical radius of S_B ?

メロトメ 御 トメ 君 トメ 君 トッ

 \equiv

So what is the numerical radius of S_B ? Only really interesting when B is finite.

 $($ \Box $)$ $($ \Box $)$ $($ \Box $)$ $($ \Box $)$

(大震 トー E

So what is the numerical radius of S_B ? Only really interesting when B is finite.

(Gaaya, 2012) Studied the numerical radius of S_B when

$$
B(z)=\left(\frac{z-\alpha}{1-\overline{\alpha}z}\right)^n.
$$

Showed $W(S_B)$ is symmetric; computed bounds on $r(S_B)$.

マーター マーティング

The Banach algebra approach

K ロ ⊁ K 個 ≯ K 差 ⊁

 $\mathcal{A} \equiv \mathcal{B}$

E

 299

(Lumer, 1961)

$$
\max\{\Re\lambda:\lambda\in W(\mathcal{T})\}=\lim_{a\to 0^+}\left(\|I+a\mathcal{T}\|-1\right)/a.
$$

Replacing T by $e^{i\theta}T$ and maximizing yields the numerical radius.

Study $||I + aS_B||$ for B a finite Blaschke product, a small. It is known that $||I + aS_B|| = \text{dist}((1 + az)/B(z), H^{\infty})$, so we have more techniques at our disposal.

Baby steps: $\|p(S_B)\|$

Foias-Tannenbaum, 1987

Let $|a| < 1$ and for $\rho > 0$. Let

$$
P_{\rho}=I-\frac{1}{4\rho^2}(I+aS_B)(I+\overline{a}S_B^{\star}).
$$

The largest ρ for which P_{ρ} is singular is $\| (I + aS_B) / 2 \|$.

We compute ρ and obtain $r(S_B)$.

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

 $\epsilon = 1$

Foias-Tannenbaum, 1987

Let $|a| < 1$ and for $\rho > 0$. Let

$$
P_{\rho}=I-\frac{1}{4\rho^2}(I+aS_B)(I+\overline{a}S_B^{\star}).
$$

The largest ρ for which P_{ρ} is singular is $\| (I + aS_B) / 2 \|$.

We compute ρ and obtain $r(S_B)$.

Theoretically...To say more, use

Theorem

Let B be a Blaschke product with real zeros. Then $r(S_B)$ is attained on the real line.

makes it easy to compute special cases, including Gaaya's result.

Theorem

Let B be a Blaschke product with real zeros. Then $r(S_B)$ is attained on the real line.

• $||I + aS_B|| \leq \gamma$ precisely when there exist $g, h \in H^{\infty}$ and $\|h\|_{\infty} < \gamma$ with

$$
1+az=B(z)g(z)+h(z).
$$

• If we solve $f(z_k) = 1 + tz_k$ for $t > 0$ and $||f||_{\infty} \leq \gamma$, then we can solve $h(z_k) = 1 + te^{i\theta} z_k$ with $\|h\|_\infty \leq \gamma + o(t).$

イロメ イ母メ イヨメ イヨメー

つくい

- **1** Blaschke products of degree 2: Can compute $r(S_B)$ and compare to the elliptical range theorem.
- **2** Blaschke products of degree 3: Let B have zeros a, b, $c \in \mathbb{R}$ and $\alpha = a + b + c$, $\beta = ab + ac + bc$, then

$$
w(S_B) = \max \left\{ \left| \frac{\alpha + \sqrt{\alpha^2 - 8(\beta - 1)}}{4} \right|, \left| \frac{\alpha - \sqrt{\alpha^2 - 8(\beta - 1)}}{4} \right| \right\}
$$

.

つのへ

 \bullet (Gaaya) Obtain numerical radius of S_B for $B(z)=\left(\frac{\alpha-z}{1-\overline{\alpha}z}\right)$ $\frac{\alpha-z}{1-\overline{\alpha}z}\bigg)^n$.

マーティ ミュース ミュ

- Numerical range and projective geometry;
- Operator theory
- Banach algebra techniques and distance estimates

 Ω

Let $a > 0$: $||I + aS_B|| = \text{dist}((1 + az)/B(z), H^{\infty})$, the norm of a truncated Toeplitz operator (TTO).

For $g \in L^{\infty}$, θ inner, define the TTO

$$
A_{\mathsf{g}}^{\theta}=P_{\mathsf{K}_{\theta}}\mathsf{M}_{\mathsf{g}}.
$$

For
$$
g \in H^{\infty}
$$
,
\n
$$
||A_g^{\theta}|| = \text{dist}(\overline{\theta}g, H^{\infty}) = ||H_{\overline{\theta}g}||
$$
\nwith $H_1 : H^2 \to \overline{H^2}$ the Hankel operator defined by $H_2 u = H$.

with $H_f: H^2 \to H_0^2$ the Hankel operator defined by $H_f u = P_{\overline{H_0^2}}(fu).$ (Sarason, 1967 Generalized interpolation on H^{∞})

イロト イ押 トイラト イラト・ブラ

 Ω

An important algebra: the Sarason algebra

$$
H^{\infty}+C(\mathbb{T})=\{f+g: f\in H^{\infty}, g\in C(\mathbb{T})\}.
$$

Sarason showed that

- \bigcirc H[∞] + C is a subalgebra of L[∞].
- **2** H^{∞} + C is a closed subalgebra of L^{∞} .
- \bullet $H^{\infty} + C = H^{\infty}[\overline{z}]$.

 $\alpha \equiv \alpha$

An important algebra: the Sarason algebra

$$
H^{\infty}+C(\mathbb{T})=\{f+g: f\in H^{\infty}, g\in C(\mathbb{T})\}.
$$

Sarason showed that

- \bullet H^{∞} + C is a subalgebra of L^{∞} .
- 2 H^{∞} + C is a closed subalgebra of L^{∞} .

$$
H^{\infty}+C=H^{\infty}[\overline{z}].
$$

Douglas's question: Is every closed subalgebra B of L^{∞} containing H^{∞} generated by H^{∞} and the conjugates of inner functions invertible in B?

∽≏ດ

An important algebra: the Sarason algebra

$$
H^{\infty}+C(\mathbb{T})=\{f+g: f\in H^{\infty}, g\in C(\mathbb{T})\}.
$$

Sarason showed that

- \bullet H^{∞} + C is a subalgebra of L^{∞} .
- 2 H^{∞} + C is a closed subalgebra of L^{∞} .

$$
\bullet \ \ H^{\infty} + C = H^{\infty}[\overline{z}].
$$

Douglas's question: Is every closed subalgebra B of L^{∞} containing H^{∞} generated by H^{∞} and the conjugates of inner functions invertible in B?

The answer Chang-Marshall theorem: Yes, and a lot more is true.

An important algebra: the Sarason algebra

$$
H^{\infty}+C(\mathbb{T})=\{f+g: f\in H^{\infty}, g\in C(\mathbb{T})\}.
$$

Sarason showed that

- \bullet H^{∞} + C is a subalgebra of L^{∞} .
- 2 H^{∞} + C is a closed subalgebra of L^{∞} .

$$
H^{\infty}+C=H^{\infty}[\overline{z}].
$$

Douglas's question: Is every closed subalgebra B of L^{∞} containing H^{∞} generated by H^{∞} and the conjugates of inner functions invertible in B?

The answer Chang-Marshall theorem: Yes, and a lot more is true.

But also plays an important role in operator theory (compactness).

 $\alpha \equiv \alpha$

 Ω

Theorem (Axler, G.; Guillory, Izuchi, Sarason)

Let B be an interpolating Blaschke product with zeros (z_n) . If $f \in H^{\infty} + C$ and $f(z_n) \to 0$, then $\overline{b}f \in H^{\infty} + C$.

Remark: It's a sort of Schwarz lemma: If b is a finite product of interpolating Blaschke products and $g \in H^{\infty} + C$ is such that every zero of B is a zero of g of at least as high a multiplicity, then

 $|g| \leq |b| \|g\|_{\infty}$

on $M(H^{\infty})\setminus \mathbb{D}$.

マーティ ミュース ミュ

Theorem (Bessonov)

Let u be an inner function and $\varphi \in H^{\infty} + C(\mathbb{T})$. Then the truncated Toeplitz operator $A_\varphi^u: K_u \to K_u$ is compact if and only if $\varphi \in u(H^{\infty} + C(\mathbb{T})).$

$$
\|\varphi \overline{u} + H^{\infty} + C(\mathbb{T})\| = 0.
$$

or *u* divides φ in $H^{\infty} + C(\mathbb{T})$
ed at $||(I + az)\overline{B} + H^{\infty}||$, *B* finite. Now

Before we looked at $||(I + az)B + H^{\infty}||$, B finite. Now we generalize this.

イロメ マ桐 レマ ティスティ

つくい

Interpolating Blaschke products

A Blaschke product B is interpolating if the zero sequence (z_n) of B is an interpolating sequence for H^{∞} ; i.e., given a bounded sequence (w_n) , there exists $f \in H^{\infty}$ with $f(z_n) = w_n$ for all n.

Carleson: this is equivalent to the existence of $\delta > 0$ with

$$
\inf_{n}\prod_{m\neq n}\left|\frac{z_m-z_n}{1-z_m\overline{z_n}}\right|\geq \delta.
$$

Let

$$
\delta_n := \prod_{m \neq n} \left| \frac{z_m - z_n}{1 - z_m \overline{z_n}} \right|.
$$

If $\delta_n \to 1$ as $n \to \infty$, the interpolating sequence is said to be a thin interpolating sequence.

A radial sequence (z_n) for which

$$
(1-|z_{n+1}|)/(1-|z_n|)\to 0
$$

as $n \to \infty$ is thin.

There are a lot of these sequences!

 $4.71 \times 4.51 \times 4.71 \times$

 \rightarrow \equiv \rightarrow

重

A radial sequence (z_n) for which

$$
(1-|z_{n+1}|)/(1-|z_n|)\rightarrow 0
$$

as $n \to \infty$ is thin.

There are a lot of these sequences! They have very nice properties!

- **1** Every sequence clustering on the unit circle contains a thin subsequence;
- ² (Chalendar, Fricain, Timotin) Every Blaschke sequence can be rotated into a thin sequence.

Recall Bessov's condition for compactness:

$$
\|\varphi\overline{u}+H^{\infty}+C(\mathbb{T})\|=[\|\varphi+u(H^{\infty}+C(\mathbb{T}))\|]=0.
$$

メロメ メタメ メミメ メミメ

E

Recall Bessov's condition for compactness:

$$
\|\varphi\overline{u}+H^{\infty}+C(\mathbb{T})\|=[\|\varphi+u(H^{\infty}+C(\mathbb{T}))\|]=0.
$$

Theorem (G., Partington)

Let B be a thin interpolating Blaschke product with zero sequence (z_n) and let $f \in H^\infty + C(\mathbb{T})$. Then

$$
||f + B(H^{\infty} + C(\mathbb{T}))|| = \limsup |f(z_n)|.
$$

This also gives you an estimate on the distance when B is an interpolating Blaschke product.

 $\mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A}$

supp μ is the closure of the union of the zeros of μ and the support of the singular measure (if there is one).

Theorem (Ahern and Clark)

Let f be continuous and let u be an inner function. The operator A_f^u is compact if and only if $f(e^{i\theta}) = 0$ for all $e^{i\theta} \in \text{ supp } u \cap \mathbb{T}$.

 $\mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A} \leftarrow \mathcal{A}$

supp μ is the closure of the union of the zeros of μ and the support of the singular measure (if there is one).

Theorem (Ahern and Clark)

Let f be continuous and let u be an inner function. The operator A_f^u is compact if and only if $f(e^{i\theta}) = 0$ for all $e^{i\theta} \in \text{ supp } u \cap \mathbb{T}$.

Theorem (G., Partington)

Let $f \in H^{\infty} + C(\mathbb{T})$ and let u be an inner function. The operator $A_f^{u^n}$ $f_f^{u^n}$ is compact for every $n \in \mathbb{N}$ if and only if

$$
\lim_{|z|\to 1^-}|f(z)|(1-|u(z)|)=0.
$$

イロメ マ桐 ビマ ヨメ マラメ

∽≏ດ

The symbol is not unique.

Chalendar, Fricain, and Timotin ask for an example of a compact TTO with symbol in $\theta(H^{\infty} + C(\mathbb{T}))$ that has no continuous symbol.

イロメ マ桐 レマ ティスティ
The symbol is not unique.

Chalendar, Fricain, and Timotin ask for an example of a compact TTO with symbol in $\theta(H^{\infty} + C(\mathbb{T}))$ that has no continuous symbol.

Example. Let B be an ibp with zero sequence clustering at every point of $\mathbb T$ and let $f \in H^\infty + C$ with $f(z_n) \to 0$ but $f(z_n) \neq 0$ for all *n*. Then A_f^B is compact, but has no continuous symbol.

つのへ

There's lots more to do here in all three areas: Numerical range, distance estimates, operator norms

メロメ メ御き メミメ メミメー

重

 $2Q$

There's lots more to do here in all three areas: Numerical range, distance estimates, operator norms

 \leftarrow \Box

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 Ω