
Numerical ranges of restricted shifts, norms of
TTOs, and the role of Banach algebras

Pamela Gorkin

Bucknell University

Conference in honor of Tom Ransford 2018

Pamela Gorkin Numerical ranges of compressed shifts



The main ingredients

Pamela Gorkin Numerical ranges of compressed shifts



1. The numerical range
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A an n × n matrix.

The numerical range of A is W (A) = {〈Ax , x〉 : ‖x‖ = 1}.

Why the numerical range?

Contains eigenvalues of A : 〈Ax , x〉 = 〈λx , x〉 = λ〈x , x〉 = λ.

Compare zero matrix and n × n Jordan block: (Here’s the 2× 2)

A1 =

[
0 0
0 0

]
,A2 =

[
0 1
0 0

]
.

W (A1) = {0},W (A2) = {z : |z | ≤ 1/2}.
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Bedlewo, 2009
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Crouzeix’s conjecture

Michel Crouzeix 2006: “Open problems on the numerical range
and functional calculus”

Conjecture (2004): For any polynomial p ∈ C[z ] and A an n × n
matrix the inequality holds:

‖p(A)‖ ≤ C max |p(z)|z∈W (A).

The best constant should be C = 2.

Let p(z) = z and A =

[
0 1
0 0

]
. Then

LHS = 1 and RHS = C · 1/2.
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Crouzeix Conjecture (2004): For any polynomial p ∈ C[z ] and A
an n × n matrix the inequality holds:

‖p(A)‖ ≤ C max |p(z)|z∈W (A).

The best constant should be C = 2.

Examples of what is known

1 (Crouzeix) Best constant is between 2 and 11.08.

2 (Badea, Crouzeix, Delyon) If W (A) is a disk, this is known.

3 (Glader, Kurula, Lindström) For tridiagonal 3× 3 matrices.

4 (D. Choi) 3× 3 matrices that are “nearly” Jordan blocks.

5 (Crouzeix, Palencia) Best constant is between 2 and 1 +
√

2.
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How sharp is that constant

A(Ω) continuous functions on Ω holomorphic on Ω.

Lemma

Let T be a bounded operator and Ω be a bounded open set
containing the spectrum of T . Suppose that for each f ∈ A(Ω)
there exists g ∈ A(Ω) such that

‖g‖Ω ≤ ‖f ‖Ω and ‖f (T ) + g(T )?‖ ≤ 2‖f ‖Ω.

Then
‖f (T )‖ ≤ (1 +

√
2)‖f ‖Ω, f ∈ A(Ω).

Ransford and Schwenninger gave a short proof of this lemma and
show that in this lemma, the constant (1 +

√
2) is sharp.
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Numerical range basics

Theorem (Elliptical range theorem.)

The numerical range of a 2× 2 matrix A is an elliptical disk with
foci at the eigenvalues a and b of A and minor axis of length

(tr(A?A)− |a|2 − |b|2)1/2.

Use computations or envelopes.

Theorem (Toeplitz Hausdorff theorem.)

The numerical range of a matrix is convex.
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2. Projective Geometry
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Kippenhahn: Finding the numerical range

Idea: Find the maximum eigenvalue of (A + A?)/2. Then rotate A
and repeat.

φ
x

y

x

y

Theory of envelopes and projective geometry
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Poncelet’s theorem, 1813

Theorem

(Poncelet’s Porism, ellipse version) Given one ellipse inside
another, if there exists one circuminscribed (simultaneously
inscribed in the outer and circumscribed on the inner) n -gon, then
any point on the boundary of the outer ellipse is the vertex of
some circuminscribed n-gon.
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In honor of the 200th anniversary of Poncelet’s theorem, Halbeisen
and Hungerbühler gave a beautiful and accessible proof of the
theorem.
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3. Operator theory and Blaschke products
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Blaschke products

B(z) = λ

n∏
j=1

z − aj
1− ajz

, where aj ∈ D, |λ| = 1.

Visualizing Blaschke products
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Compressions of the shift with finite Blaschke symbol

H2 is the Hardy space; f (z) =
∑∞

n=0 anz
n where

∑∞
n=0 |an|2 <∞.

An inner function I is a bounded analytic function on D with radial
limits |I ?| = 1 a.e.

S is the shift operator S : H2 → H2 defined by [S(f )](z) = zf (z);

The adjoint is [S?(f )](z) = (f (z)− f (0))/z .

Theorem (Beurling’s theorem)

The nontrivial invariant subspaces under S are
UH2 = {Uh : h ∈ H2}, where U is an inner function.

Subspaces invariant under the adjoint, S? are KU := H2 	 UH2.
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What’s the matrix representing SB , B Blaschke?

B(z) = λ

n∏
j=1

z − aj
1− ajz

, where aj ∈ D, |λ| = 1.

KB := H2 	 BH2.

Consider KB where B(z) =
∏n

j=1
z−aj

1−ajz .

Consider the Szegö kernel: ga(z) =
1

1− az
.

If aj are distinct, KB = span{gaj : j = 1, . . . , n}.
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Compressions of the shift

Consider the compression of the shift: SB : KB → KB defined by

SB(f ) = PBS(f ),

where PB is the orthogonal projection from H2 onto KB .

Applying Gram-Schmidt to the kernels we get the
Takenaka-Malmquist basis: Let ba(z) = z−a

1−az and

{
√

1− |a1|2
1− a1z

, ba1

√
1− |a2|2

1− a2z
, . . .

k−1∏
j=1

baj

√
1− |ak |2

1− akz
, . . .}.
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Matrix for SB with B finite, a1, . . . , an the zeros of B

The n × n matrix A is

a1

√
1− |a1|2

√
1− |a2|2 . . . (

∏n−1
k=2(−ak))

√
1− |a1|2

√
1− |an|2

0 a2 . . . (
∏n−1

k=3(−ak))
√

1− |a2|2
√

1− |an|2

. . . . . . . . . . . .

0 0 0 an
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What’s the connection?
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Unitary dilations

Uλ =

[
A stuff(λ)

stuff(λ) stuff(λ)

]

1 The eigenvalues of Uλ are the values zB(z) maps to λ;

2 W (Uλ) is the polygon formed with the points zB(z) identifies.

3 W (A) ⊆
⋂
{W (Uλ) : λ ∈ D}. We’ll see why this is true in a

moment. First let’s talk about why we care about this.
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Enter Halmos

What do unitary dilations of an operator T know about T?

Specifically, is W (A) =
⋂
{W (Uλ) : U a unitary dilation of A}
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Uλ =

[
A stuff(λ)

stuff(λ) stuff(λ)

]

W (A) ⊆
⋂
{W (Uλ) : λ ∈ D}.

Fact: Because rank(I − S?BSB) = rank(I − SBS
?
B) = 1, these operators

have unitary 1-dilations. So we’ve added one row and one column.

Let V = [In, 0] be n × (n + 1). Then A = VUλV
t and V tx =

[
x
0

]
and

‖V tx‖ = 1.

〈Ax , x〉 = 〈VUλV tx , x〉 = 〈UλV tx ,V tx〉.

‖V tx‖ = 1 implies the containment.
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For each λ ∈ T, we get a unitary 1-dilation of SB :

bij =


aij if 1 ≤ i , j ≤ n,

λ
(∏j−1

k=1(−ak)
)√

1− |aj |2 if i = n + 1 and 1 ≤ j ≤ n,(∏n
k=i+1(−ak)

)√
1− |ai |2 if j = n + 1 and 1 ≤ i ≤ n,

λ
∏n

k=1(−ak) if i = j = n + 1.

The eigenvalues of Uλ are the values for which zB(z) = λ, and
that’s all we need to find W (Uλ) (=convex hull of the eigenvalues).
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These unitary dilations know everything

The class Sn: Matrices with no eigenvalues of modulus 1,
contractions (completely non-unitary contractions) with
rank(I − T ?T ) = 1.

Theorem (Gau, Wu)

For T ∈ Sn and any point λ ∈ T there is an (n + 1)-gon inscribed
in T that circumscribes the boundary of W (T ) and has λ as a
vertex.

The points where zB(z) = λ are the vertices of a polygon. When
we intersect the convex hull of these vertices we get W (SB):

W (SB) =
⋂
{W (U) : U unitary dilation of SB}.
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Connecting points identified by zB(z)/looking at W (Uλ)

5 curve.pdf

  
  
 

curve.pdf

  
 

Poncelet curves
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Upshot

It’s hard to say something about the shape of the numerical range
for high degree...as in degree ≥ 3. So we ask an easier question.

The numerical radius of T is

r(T ) = sup{|λ| : λ ∈W (T )} = sup
‖x‖=1

|〈Tx , x〉|.

r(T ) ≤ ‖T‖ ≤ 2r(T ).

When r(T ) ≤ 1 we have a local version:

Theorem (Klaja, Mashreghi, Ransford)

If T is an operator on a Hilbert space H with r(T ) ≤ 1, then

‖Tx‖2 ≤ 2 + 2
√

1− |〈Tx , x〉|2 (x ∈ H, ‖x‖ ≤ 1).
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So what is the numerical radius of SB?

Only really interesting
when B is finite.

(Gaaya, 2012) Studied the numerical radius of SB when

B(z) =

(
z − α

1− αz

)n

.

Showed W (SB) is symmetric; computed bounds on r(SB).
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The Banach algebra approach
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Basic connection

(Lumer, 1961)

max{<λ : λ ∈W (T )} = lim
a→0+

(‖I + aT‖ − 1) /a.

Replacing T by e iθT and maximizing yields the numerical radius.

Study ‖I + aSB‖ for B a finite Blaschke product, a small. It is
known that ‖I + aSB‖ = dist((1 + az)/B(z),H∞), so we have
more techniques at our disposal.

Baby steps: ‖p(SB)‖

Pamela Gorkin Numerical ranges of compressed shifts



Foias-Tannenbaum, 1987

Let |a| < 1 and for ρ > 0. Let

Pρ = I − 1

4ρ2
(I + aSB)(I + aS?B).

The largest ρ for which Pρ is singular is ‖(I + aSB)/2‖.

We compute ρ and obtain r(SB).

Theoretically...To say more, use

Theorem

Let B be a Blaschke product with real zeros. Then r(SB) is
attained on the real line.

makes it easy to compute special cases, including Gaaya’s result.
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Sarason’s work

Theorem

Let B be a Blaschke product with real zeros. Then r(SB) is
attained on the real line.

• ‖I + aSB‖ ≤ γ precisely when there exist g , h ∈ H∞ and
‖h‖∞ ≤ γ with

1 + az = B(z)g(z) + h(z).

• If we solve f (zk) = 1 + tzk for t > 0 and ‖f ‖∞ ≤ γ, then we can
solve h(zk) = 1 + te iθzk with ‖h‖∞ ≤ γ + o(t).
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Examples

1 Blaschke products of degree 2: Can compute r(SB) and
compare to the elliptical range theorem.

2 Blaschke products of degree 3: Let B have zeros a, b, c ∈ R
and α = a + b + c , β = ab + ac + bc, then

w(SB) = max

{∣∣∣∣∣α +
√
α2 − 8(β − 1)

4

∣∣∣∣∣ ,
∣∣∣∣∣α−

√
α2 − 8(β − 1)

4

∣∣∣∣∣
}
.

3 (Gaaya) Obtain numerical radius of SB for B(z) =
(
α−z

1−αz

)n
.
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This gives us the following possible approaches

• Numerical range and projective geometry;

• Operator theory

• Banach algebra techniques and distance estimates
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Generalizing SB = PKB
S on KB

Let a > 0: ‖I + aSB‖ = dist((1 + az)/B(z),H∞), the norm of a
truncated Toeplitz operator (TTO).

For g ∈ L∞, θ inner, define the TTO

Aθg = PKθ
Mg .

For g ∈ H∞,
‖Aθg‖ = dist(θg ,H∞) = ‖Hθg‖

with Hf : H2 → H2
0 the Hankel operator defined by Hf u = P

H2
0
(fu).

(Sarason, 1967 Generalized interpolation on H∞)
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Other distance estimates and the Sarason algebra

An important algebra: the Sarason algebra

H∞ + C (T) = {f + g : f ∈ H∞, g ∈ C (T)}.

Sarason showed that

1 H∞ + C is a subalgebra of L∞.

2 H∞ + C is a closed subalgebra of L∞.

3 H∞ + C = H∞[z ].

Douglas’s question: Is every closed subalgebra B of L∞

containing H∞ generated by H∞ and the conjugates of inner
functions invertible in B?

The answer Chang-Marshall theorem: Yes, and a lot more is true.

But also plays an important role in operator theory (compactness).
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Division in H∞ + C

Theorem (Axler, G.; Guillory, Izuchi, Sarason)

Let B be an interpolating Blaschke product with zeros (zn). If
f ∈ H∞ + C and f (zn)→ 0, then bf ∈ H∞ + C .

Remark: It’s a sort of Schwarz lemma: If b is a finite product of
interpolating Blaschke products and g ∈ H∞ + C is such that
every zero of B is a zero of g of at least as high a multiplicity, then

|g | ≤ |b|‖g‖∞

on M(H∞) \ D.
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An example in this setting

Theorem (Bessonov)

Let u be an inner function and ϕ ∈ H∞ + C (T). Then the
truncated Toeplitz operator Au

ϕ : Ku → Ku is compact if and only
if ϕ ∈ u(H∞ + C (T)).

‖ϕu + H∞ + C (T)‖ = 0.

or u divides ϕ in H∞ + C (T)

Before we looked at ‖(I + az)B + H∞‖, B finite. Now we
generalize this.
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Interpolating Blaschke products

A Blaschke product B is interpolating if the zero sequence (zn) of
B is an interpolating sequence for H∞; i.e., given a bounded
sequence (wn), there exists f ∈ H∞ with f (zn) = wn for all n.

Carleson: this is equivalent to the existence of δ > 0 with

inf
n

∏
m 6=n

∣∣∣∣ zm − zn
1− zmzn

∣∣∣∣ ≥ δ.
Let

δn :=
∏
m 6=n

∣∣∣∣ zm − zn
1− zmzn

∣∣∣∣ .
If δn → 1 as n→∞, the interpolating sequence is said to be a
thin interpolating sequence.

Pamela Gorkin Numerical ranges of compressed shifts



A radial sequence (zn) for which

(1− |zn+1|)/(1− |zn|)→ 0

as n→∞ is thin.

There are a lot of these sequences!

They have very nice properties!

1 Every sequence clustering on the unit circle contains a thin
subsequence;

2 (Chalendar, Fricain, Timotin) Every Blaschke sequence can be
rotated into a thin sequence.
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Recall Bessov’s condition for compactness:

‖ϕu + H∞ + C (T)‖ = [‖ϕ+ u (H∞ + C (T)) ‖ = 0.

Theorem (G., Partington)

Let B be a thin interpolating Blaschke product with zero sequence
(zn) and let f ∈ H∞ + C (T). Then

‖f + B(H∞ + C (T))‖ = lim sup |f (zn)|.

This also gives you an estimate on the distance when B is an
interpolating Blaschke product.
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Bringing it back home

supp u is the closure of the union of the zeros of u and the support
of the singular measure (if there is one).

Theorem (Ahern and Clark)

Let f be continuous and let u be an inner function. The operator
Au
f is compact if and only if f (e iθ) = 0 for all e iθ ∈ supp u ∩ T.

Theorem (G., Partington)

Let f ∈ H∞ + C (T) and let u be an inner function. The operator
Aun

f is compact for every n ∈ N if and only if

lim
|z|→1−

|f (z)|(1− |u(z)|) = 0.
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Question

The symbol is not unique.

Chalendar, Fricain, and Timotin ask for an example of a compact
TTO with symbol in θ(H∞ + C (T)) that has no continuous
symbol.

Example. Let B be an ibp with zero sequence clustering at every
point of T and let f ∈ H∞ + C with f (zn)→ 0 but f (zn) 6= 0 for
all n. Then AB

f is compact, but has no continuous symbol.
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There’s lots more to do here in all three areas:
Numerical range, distance estimates, operator norms

Pamela Gorkin Numerical ranges of compressed shifts



There’s lots more to do here in all three areas:
Numerical range, distance estimates, operator norms

Pamela Gorkin Numerical ranges of compressed shifts


