Entire functions mapping given countable dense real sets onto each other bijectively

(preliminary report)

Mohamed Cheddadi (masters' student) Paul Gauthier* (extinguished professor)

In celebration of Thomas Ransford's 60th birthday May 21, 2018, Université Laval

ORDER

An order is a way of giving meaning to an expression of the form

x < *y*.

Examples: On people,

Height, weight, age and income are orders.

Nationality, religion, color and gender are not. orders.

ORDER ISOMORPHISMS

Every well-ordered set is order-isomorphic to a unique ordinal. Note: \mathbb{Q} not well-ordered.

Definition. An ordered set is **dense**, if between every two elements, there is a third. Note: \mathbb{Q} is dense.

Cantor 1895

If *A* and *B* are countable dense ordered sets without first elements, then there is an order isomorphism

 $f: A \to B.$

Corollary

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is a homeomorphism

 $f: \mathbb{R} \to \mathbb{R}$ with f(A) = B.

Franklin 1925

If *A* and *B* are countable dense subsets of \mathbb{R} , then there is a bianalytic mapping

 $f : \mathbb{R} \to \mathbb{R}$, with f(A) = B.

Franklin 1925 (again)

For *A* and *B* countable dense subsets of \mathbb{R} , there exists a bianalytic map $f : \mathbb{R} \to \mathbb{R}$, such that:

 $f(\mathbb{R}) \subset \mathbb{R};$

f restricts to a bijection of *A* onto *B* (hence, $f(\mathbb{R}) = \mathbb{R}$).

Morayne 1987

If *A* and *B* are countable dense subsets of \mathbb{C}^n (respectively \mathbb{R}^n), n > 1, there is a measure preserving biholomorphic mapping of \mathbb{C}^n (respectively bianalytic mapping of \mathbb{R}^n) which maps *A* to *B*.

Rosay-Rudin 1988 Same result for \mathbb{C}^n only.

Remarks

Franklin's proof invokes the statement that the uniform limit of analytic functions is analytic, which is false.

For \mathbb{C}^1 , Morayne, Rosay-Rudin results are false. For n = 1, Morayne conclusion \Rightarrow Franklin, but Morayne proof fails for n = 1. **Theorem.** For *A* and *B* countable dense subsets of \mathbb{R} , there exists an entire function *f* such that:

 $f(\mathbb{R}) \subset \mathbb{R};$

f restricts to a bijection of *A* onto *B* (hence, $f(\mathbb{R}) = \mathbb{R}$).

Proof.
$$A = \{\alpha_1, \alpha_2, ...\}; B = \{\beta_1, \beta_2, ...\}.$$

 $f(z) = \lim_{n \to \infty} f_n(z) = \lim_{n \to \infty} \left(z + \sum_{j=1}^n \lambda_j h_j(z) \right) = z + \sum_{j=1}^\infty \lambda_j h_j(z),$
 $h_1 = 1; \text{ and } h_n(z) = e^{-z^2} \prod_{k=1}^{n-1} (z - \alpha_k), \text{ for } n = 2, 3, ...,$

 λ_j 's small $\Rightarrow f$ entire and $f'(x) > 0, \forall x \in \mathbb{R}$, λ_j 's real $\Rightarrow f(\mathbb{R}) \subset \mathbb{R}$.

$$h_n(z) = 0$$
, iff $z = \alpha_k, k = 2, \dots, n-1$.

Choose λ_n so $f_n(\alpha_n) = \beta_n$.

5

I OVERSIMPLIFIED

Choose enumerations $A = \{a_1, a_2, ...\}$ and $B = \{b_1, b_2, ..., \}$. The sequences $\{\alpha_n\}$ and $\{\beta_n\}$ are rearrangements of $\{a_n\}$ and $\{b_n\}$ chosen recursively.

First, choose $\alpha_1, \lambda_1, \beta_1, \beta_2 \neq \beta_1$, so $f_1(\alpha_1) = \beta_1$.

Suppose we have respectively distinct

$$\alpha_1, \dots, \alpha_{2n-1}; \quad \lambda_1, \dots, \lambda_{2n-1}; \quad \beta_1, \dots, \beta_{2n}$$
$$\alpha_{2k-1} = (\text{first } a_i) \in A \setminus \{\alpha_j : j < 2k - 1\}, \quad k = 1, \dots, n$$
$$\beta_{2k} = (\text{first } b_i) \in B \setminus \{\beta_j : j < 2k\}, \quad k = 1, \dots, n$$
$$f(\alpha_j) = \beta_j, \quad j = 1, \dots, 2n - 1$$

Choose

 $\begin{aligned} &\alpha_{2n}, \lambda_{2n}, \\ &\beta_{2n+1}, \alpha_{2n+1}, \lambda_{2n+1}, \\ &\beta_{2(n+1)} \\ &\text{with} \end{aligned}$

$$f_{2n}(\alpha_{2n}) = \beta_{2n}$$
 $f_{2n+1}(\alpha_{2n+1}) = \beta_{2n+1}$

α_1	λ_1	β_1
_	—	β_2
_	—	—
•	•	•
•	•	•
•	•	•
α_{2n-1}	λ_{2n-1}	β_{2n-1}
$[\alpha_{2n}]$	λ_{2n}]	β_{2n}
α_{2n+1}	$[\lambda_{2n+1}]$	β_{2n+1}]
—		$\beta_{2(n+1)}$

)

7

How to find $[\alpha_{2n}, \lambda_{2n}]$ such that

$$\begin{split} \beta_{2n} &= f_{2n}(\alpha_{2n}) = \alpha_{2n} + \sum_{j=1}^{2n-1} \lambda_j h_j(\alpha_{2n}) + \lambda_{2n} h_{2n}(\alpha_{2n}) = \\ f_{2n-1}(\alpha_{2n}) + \lambda_{2n} h_{2n}(\alpha_{2n}). \end{split}$$

Put

$$g(x, y) = f_{2n-1}(x) + yh_{2n}(x).$$

Fix y_n small. Show $g(\cdot, y_n) : \mathbb{R} \to \mathbb{R}$ surjective. So, $\exists \alpha$ with $g(\alpha, y_n) = \beta_{2n}$. Implicit function theorem implies, there is $(\alpha_{2n}, \lambda_{2n})$ near (α, y_n) , with $g(\alpha_{2n}, \lambda_{2n}) = \beta_{2n}$ and $\alpha_{2n} \in A$. **Theorem** (again) $A, B \subset \mathbb{R}$ countable dense. There is *f* entire which restricts to bijection $A \rightarrow B$.

Can impose further conditions on f.

1. Interpolation: $f(a_n) = b_n$, $n \in \mathbb{Z}$, for increasing sequences without limit points.

2. Growth: $M(f, r) > \rho(r)$, given $\rho(r) > 0$ continuous,

3. Universality: translates of f are dense in space of entire functions.

Lemma. Suppose *E* approximation subset of \mathbb{C} disjoint from \mathbb{R} ; {*c_n*} sequence of distinct complex numbers tending to ∞ disjoint from *E* and \mathbb{R} ; {*d_n*} arbitrary sequence in \mathbb{C} , ; {*a_n*} and {*b_n*}, *n* = 0, ±1, ±2, ..., strictly increasing sequences of real numbers tending to ∞ , as $n \to \infty$ and ϵ positive continuous functions on \mathbb{C} . Then, for every function $g \in A(E)$, there exists an entire function Φ , such that $|\Phi - g| < \epsilon$ on *E*; $M(\Phi, r) > 1/\epsilon(r)$; $\Phi(c_n) = d_n$, n =1, 2, ...; Φ maps \mathbb{R} bijectively onto \mathbb{R} ; $\Phi' > 0$ on \mathbb{R} and $\Phi(a_n) = b_n$, $n = 0, \pm 1, \pm 2, ...$

Lemma. Same hypotheses, there exists entire function H, which tends to 0 as $z \to \infty$ on E, whose zeros are precisely the points a_n , $n = 0, \pm 1, \pm 2, \ldots$ and the points c_n , $n = 1, 2, \ldots$, and such that both |H| and |H'| dominated by ϵ on \mathbb{R} .

Replace

$$f(z) = z + \sum_{j=1}^{\infty} \lambda_j h_j(z)$$

by

$$f(z) = \Phi(z) + H(z) \sum_{j=1}^{\infty} \lambda_j h_j(z).$$

Most populous confederacy of Iroquois:

Wendat = Wyandot = Huron

In Canada, they are mainly here in Québec city.

TIAWENHK

MERCI