MULTIPLIERS BETWEEN SUB-HARDY HILBERT SPACES

E. Fricain*, A. Hartmann, W.T. Ross, R. Rupam

*Équipe d'Analyse Laboratoire Paul Painlevé Université Lille

A conference in celebration of Thomas Ransford's 60th birthday, 21th to 25th June, 2018 Québec, Canada

MULTIPLIERS

 $\mathcal{H}_1, \mathcal{H}_2 \subset \operatorname{Hol}(\mathbb{D})$ Hilbert spaces of holomorphic functions. Multipliers :

$$\mathcal{M}(\mathcal{H}_1, \mathcal{H}_2) = \{ \varphi \in \text{Hol}(\mathbb{D}) : \varphi f \in \mathcal{H}_2, \text{ for all } f \in \mathcal{H}_1 \}$$

^{1.} For a complete characterization of $\mathcal{M}(\mathcal{D}, \mathcal{D})$, see O. El-Fallah–K. Kellay–J. Mashreghi–T. Ransford, *A primer on the Dirichlet space*, Cambridge Tracts in Mathematics, 2014.

MULTIPLIERS

 $\mathcal{H}_1, \mathcal{H}_2 \subset \operatorname{Hol}(\mathbb{D})$ Hilbert spaces of holomorphic functions.

Multipliers:

$$\mathcal{M}(\mathcal{H}_1, \mathcal{H}_2) = \{ \varphi \in \text{Hol}(\mathbb{D}) : \varphi f \in \mathcal{H}_2, \text{ for all } f \in \mathcal{H}_1 \}$$

For $\varphi \in \mathcal{M}(\mathcal{H}_1, \mathcal{H}_2)$ we also let M_{φ} be the multiplication operator from \mathcal{H}_1 to \mathcal{H}_2 .

^{1.} For a complete characterization of $\mathcal{M}(\mathcal{D}, \mathcal{D})$, see O. El-Fallah–K. Kellay–J. Mashreghi–T. Ransford, *A primer on the Dirichlet space*, Cambridge Tracts in Mathematics, 2014.

MULTIPLIERS

 $\mathcal{H}_1, \mathcal{H}_2 \subset \operatorname{Hol}(\mathbb{D})$ Hilbert spaces of holomorphic functions.

Multipliers :

$$\mathcal{M}(\mathcal{H}_1, \mathcal{H}_2) = \{ \varphi \in \text{Hol}(\mathbb{D}) : \varphi f \in \mathcal{H}_2, \text{ for all } f \in \mathcal{H}_1 \}$$

For $\varphi \in \mathcal{M}(\mathcal{H}_1, \mathcal{H}_2)$ we also let M_{φ} be the multiplication operator from \mathcal{H}_1 to \mathcal{H}_2 .

Classical examples:

Let H^{∞} Hardy space of bounded analytic functions on \mathbb{D} , then

- $\mathcal{M}(H^2, H^2) = H^{\infty}$ (H^2 Hardy space)
- $\mathcal{M}(A^2, A^2) = H^{\infty}$ (A^2 Bergman space)
- $\mathcal{M}(\mathcal{D}, \mathcal{D}) \subsetneq H^{\infty}$ (\mathcal{D} Dirichlet space) ¹

^{1.} For a complete characterization of $\mathcal{M}(\mathcal{D}, \mathcal{D})$, see O. El-Fallah–K. Kellay–J. Mashreghi–T. Ransford, *A primer on the Dirichlet space*, Cambridge Tracts in Mathematics, 2014.

Two situations:

- $\mathcal{H}_1, \mathcal{H}_2$ are model spaces.
- $\mathcal{H}_1, \mathcal{H}_2$ are the range of coanalytic Toeplitz operators equipped with the range norm.

Both situations can be viewed as examples of Hilbert spaces which are boundedly contained into H^2 .

The multiplier's question in that context appear naturally e.g. in partial orders on partial isometries (see works of Garcia–Martin–Ross and Timotin).

MODEL SPACES

u a non constant inner function : $u \in H^{\infty}$, |u| = 1 a.e. on \mathbb{T} . Factorization : $u = BS_{\mu}$, with

- Blaschke product : $B = \prod_{\lambda \in \Lambda} b_{\lambda}$, $b_{\lambda}(z) = \frac{|\lambda|}{\lambda} \frac{\lambda z}{1 \overline{\lambda}z}$, $\sum_{\lambda \in \Lambda} (1 |\lambda|^2) < +\infty$,
- singular inner function : $S_{\mu}(z) = \exp\left(-\int_{\mathbb{T}} \frac{\zeta + z}{\zeta z} d\mu(\zeta)\right)$, $0 \le \mu \perp m$.

MODEL SPACES

u a non constant inner function : $u \in H^{\infty}$, |u| = 1 a.e. on \mathbb{T} . Factorization : $u = BS_{\mu}$, with

- Blaschke product : $B = \prod_{\lambda \in \Lambda} b_{\lambda}$, $b_{\lambda}(z) = \frac{|\lambda|}{\lambda} \frac{\lambda z}{1 \overline{\lambda}z}$, $\sum_{\lambda \in \Lambda} (1 |\lambda|^2) < +\infty$,
- singular inner function : $S_{\mu}(z) = \exp\left(-\int_{\mathbb{T}} \frac{\zeta + z}{\zeta z} d\mu(\zeta)\right)$, $0 \le \mu \perp m$.

Model space:

$$K_u = H^2 \ominus uH^2 = H^2 \cap u\overline{zH^2}$$

is the generic backward shift invariant : $S^*K_u \subset K_u$, Sf(z) = zf(z)

Examples 1

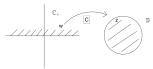
- **2** $K_B = \bigvee \{k_\lambda : \lambda \in \Lambda\}, \ k_\lambda(z) = \frac{1}{1 \overline{\lambda}z}, \ \Lambda \subset \mathbb{D}$ Blaschke, no multiplicity.
- K_{θ_a} is unitarily isomorphic to $PW_a = \mathcal{F}(L^2(-a,a))$, $\theta_a(z) = S_{2a\delta_{f_{11}}}(z) = e^{2a\frac{z+1}{z-1}}, a > 0.$

More precisely, let $C: \mathbb{C}_+ \longrightarrow \mathbb{D}$, $C(w) = z = \frac{w-i}{w+i}$.

Let H^2_+ be the Hardy space on \mathbb{C}_+ . Then

$$\mathcal{U}: H^2 \longrightarrow H^2_+, \mathcal{U}f(w) = \frac{1}{\sqrt{\pi}(w+i)} f(C(w))$$

is unitary and $UK_{\theta_a} = K_{\theta_a \circ C}$. Note that $(\theta_a \circ C)(w) = e^{2iaw} = S^{2a}(w)$, with $S(w) = e^{iw}$ and $K_{S^{2a}} = S^a PW_a$.



Examples 1

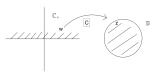
- **2** $K_B = \bigvee \{k_\lambda : \lambda \in \Lambda\}, \ k_\lambda(z) = \frac{1}{1 \overline{\lambda}z}, \ \Lambda \subset \mathbb{D}$ Blaschke, no multiplicity.
- **3** K_{θ_a} is unitarily isomorphic to $PW_a = \mathcal{F}(L^2(-a, a)),$ $\theta_a(z) = S_{2a\delta_{f,1}}(z) = e^{2a\frac{z+1}{z-1}}, a > 0.$

More precisely, let $C: \mathbb{C}_+ \longrightarrow \mathbb{D}$, $C(w) = z = \frac{w-i}{w+i}$

Let H^2_+ be the Hardy space on \mathbb{C}_+ . Then

$$\mathcal{U}: H^2 \longrightarrow H^2_+, \mathcal{U}f(w) = \frac{1}{\sqrt{\pi(w+i)}} f(C(w))$$

is unitary and $\mathcal{U}K_{\theta_a} = K_{\theta_a \circ C}$. Note that $(\theta_a \circ C)(w) = e^{2iaw} = S^{2a}(w)$, with $S(w) = e^{iw}$ and $K_{S^{2a}} = S^a PW_a$.



Examples 1

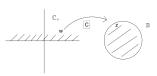
- $K_B = \bigvee \{k_{\lambda} : \lambda \in \Lambda\}, \ k_{\lambda}(z) = \frac{1}{1 \overline{\lambda}z}, \ \Lambda \subset \mathbb{D}$ Blaschke, no multiplicity.
- **3** K_{θ_a} is unitarily isomorphic to $PW_a = \mathcal{F}(L^2(-a, a)),$ $\theta_a(z) = S_{2a\delta_{\{1\}}}(z) = e^{2a\frac{z+1}{z-1}}, a > 0.$

More precisely, let $C: \mathbb{C}_+ \longrightarrow \mathbb{D}$, $C(w) = z = \frac{w-i}{w+i}$.

Let H^2_+ be the Hardy space on \mathbb{C}_+ . Then

$$\mathcal{U}: H^2 \longrightarrow H^2_+, \mathcal{U}f(w) = \frac{1}{\sqrt{\pi}(w+i)} f(C(w))$$

is unitary and $\mathcal{U}K_{\theta_a} = K_{\theta_a \circ C}$. Note that $(\theta_a \circ C)(w) = e^{2iaw} = S^{2a}(w)$, with $S(w) = e^{iw}$ and $K_{S^{2a}} = S^a PW_a$.



For u, v inner, denote $\mathcal{M}(u, v) = \mathcal{M}(K_u, K_v)$.

For u, v inner, denote $\mathcal{M}(u, v) = \mathcal{M}(K_u, K_v)$.

Frostman shift : $u_a = \frac{u-a}{1-\overline{a}u}$ (is Blaschke for a.e. $a \in \mathbb{D}$).

For u, v inner, denote $\mathcal{M}(u, v) = \mathcal{M}(K_u, K_v)$.

Frostman shift : $u_a = \frac{u - a}{1 - \overline{a}u}$ (is Blaschke for a.e. $a \in \mathbb{D}$).

Observe, when $f \in K_u = H^2 \cap u\overline{zH^2}$, then $f = u\overline{zg}$, $g \in H^2$. Hence

$$\frac{1}{1-\overline{a}u}f = \frac{u-a}{1-\overline{a}u}\overline{\left(z\frac{g}{1-\overline{a}u}\right)} \in u_a\overline{zH^2},$$

and hence $\frac{1}{1-\overline{a}u} \in \mathcal{M}(u, u_a)$.

For u, v inner, denote $\mathcal{M}(u, v) = \mathcal{M}(K_u, K_v)$.

Frostman shift : $u_a = \frac{u - a}{1 - \overline{a}u}$ (is Blaschke for a.e. $a \in \mathbb{D}$).

Observe, when $f \in K_u = H^2 \cap u\overline{zH^2}$, then $f = u\overline{zg}$, $g \in H^2$. Hence

$$\frac{1}{1-\overline{a}u}f = \frac{u-a}{1-\overline{a}u}\overline{\left(z\frac{g}{1-\overline{a}u}\right)} \in u_a\overline{zH^2},$$

and hence $\frac{1}{1-\overline{a}u} \in \mathcal{M}(u, u_a)$.

It turns out $\frac{\sqrt{1-|a|^2}}{1-\bar{a}u}$ isometric multiplier from K_u onto K_{u_a} .

For u, v inner, denote $\mathcal{M}(u, v) = \mathcal{M}(K_u, K_v)$.

Frostman shift : $u_a = \frac{u - a}{1 - \overline{a}u}$ (is Blaschke for a.e. $a \in \mathbb{D}$).

Observe, when $f \in K_u = H^2 \cap u\overline{zH^2}$, then $f = u\overline{zg}$, $g \in H^2$. Hence

$$\frac{1}{1-\overline{a}u}f = \frac{u-a}{1-\overline{a}u}\overline{\left(z\frac{g}{1-\overline{a}u}\right)} \in u_a\overline{zH^2},$$

and hence $\frac{1}{1-\overline{a}u} \in \mathcal{M}(u, u_a)$.

It turns out $\frac{\sqrt{1-|a|^2}}{1-\overline{a}u}$ isometric multiplier from K_u onto K_{u_a} .

Crofoot characterized onto multipliers in terms of arguments of u and v and a Carleson measure condition.

CARLESON MEASURES FOR MODEL SPACES

The Carleson measure condition is obviously necessary.

Indeed, let $\varphi \in \mathcal{M}(u, v)$. Then, $\varphi K_u \subset K_v \subset H^2$, that is

$$\int_{\mathbb{T}} |f(\zeta)|^2 |\varphi(\zeta)|^2 dm(\zeta) < \infty, \qquad (f \in K_u),$$

which means that $|\varphi|^2 dm$ has to be a Carleson measure for K_u .

KERNEL OF TOEPLITZ OPERATORS

Toeplitz operator: $T_{\psi}f = P_{+}(\psi f)$, where $\psi \in L^{\infty}(\mathbb{T})$, $P_{+}(\sum_{n \in \mathbb{Z}} a_{n}e^{int}) = \sum_{n \geq 0} a_{n}e^{int}$ Riesz projection.

Observe that $K_v = \ker T_{\overline{v}}$, $S^*u \in K_u$ and $T_{1-u(0)\overline{u}}$ is invertible. Using these facts, along with the identity (on \mathbb{T})

$$\bar{v}\varphi S^*u = \bar{v}\varphi \bar{z}(u - u(0)) = (1 - u(0)\bar{u})\bar{z}\bar{v}u\varphi,$$

it follows that $\varphi \in \mathcal{M}(u,v) \implies \varphi \in \ker T_{\overline{zv}u}$.

So to summary, if $\varphi \in \mathcal{M}(u, v)$, then

$$|\varphi|^2 dm$$
 has to be a Carleson measure for K_u , (1)

and

$$\varphi \in \ker T_{\overline{z}\overline{v}u}.\tag{2}$$

KERNEL OF TOEPLITZ OPERATORS

Toeplitz operator: $T_{\psi}f = P_{+}(\psi f)$, where $\psi \in L^{\infty}(\mathbb{T})$, $P_{+}(\sum_{n \in \mathbb{Z}} a_{n}e^{int}) = \sum_{n \geq 0} a_{n}e^{int}$ Riesz projection.

Observe that $K_v = \ker T_{\overline{v}}$, $S^*u \in K_u$ and $T_{1-u(0)\overline{u}}$ is invertible. Using these facts, along with the identity (on \mathbb{T})

$$\bar{v}\varphi S^*u = \bar{v}\varphi \bar{z}(u - u(0)) = (1 - u(0)\bar{u})\bar{z}\bar{v}u\varphi,$$

it follows that $\varphi \in \mathcal{M}(u, v) \implies \varphi \in \ker T_{\overline{zv}u}$.

So to summary, if $\varphi \in \mathcal{M}(u, v)$, then

$$|\varphi|^2 dm$$
 has to be a Carleson measure for K_u , (1)

and

$$\varphi \in \ker T_{\overline{zv}u}. \tag{2}$$

KERNEL OF TOEPLITZ OPERATORS

Toeplitz operator: $T_{\psi}f = P_{+}(\psi f)$, where $\psi \in L^{\infty}(\mathbb{T})$, $P_{+}(\sum_{n \in \mathbb{Z}} a_{n}e^{int}) = \sum_{n \geq 0} a_{n}e^{int}$ Riesz projection.

Observe that $K_v = \ker T_{\overline{v}}$, $S^*u \in K_u$ and $T_{1-u(0)\overline{u}}$ is invertible. Using these facts, along with the identity (on \mathbb{T})

$$\bar{v}\varphi S^*u = \bar{v}\varphi\bar{z}(u - u(0)) = (1 - u(0)\bar{u})\bar{z}\bar{v}u\varphi,$$

it follows that $\varphi \in \mathcal{M}(u, v) \implies \varphi \in \ker T_{\overline{zv}u}$.

So to summary, if $\varphi \in \mathcal{M}(u, v)$, then

$$|\varphi|^2 dm$$
 has to be a Carleson measure for K_u , (1)

and

$$\varphi \in \ker T_{\overline{zv}u}.\tag{2}$$

CHARACTERIZATION OF MULTIPLIERS FROM ONE MODEL SPACE TO ANOTHER

THEOREM 1 (F.-HARTMANN-ROSS, 2016)

For inner functions u and v and $\varphi \in H^2$, the following are equivalent:

Observe that $\mathcal{M}(u,u) = \mathbb{C}$.

Indeed, let $\varphi \in \mathcal{M}(u, u)$. Then according to Theorem 1, we have $\varphi \in \ker T_{\overline{z}\overline{u}u} = \ker T_{\overline{z}} = \mathbb{C}$.

Note that Theorem 1 was generalized recently by Camara–Partington in the context of the kernels of Toeplitz operators.

CHARACTERIZATION OF MULTIPLIERS FROM ONE MODEL SPACE TO ANOTHER

THEOREM 1 (F.-HARTMANN-ROSS, 2016)

For inner functions u and v and $\varphi \in H^2$, the following are equivalent:

Observe that $\mathcal{M}(u, u) = \mathbb{C}$.

Indeed, let $\varphi \in \mathcal{M}(u, u)$. Then according to Theorem 1, we have $\varphi \in \ker T_{\overline{z}\overline{u}u} = \ker T_{\overline{z}} = \mathbb{C}$.

Note that Theorem 1 was generalized recently by Camara–Partington in the context of the kernels of Toeplitz operators.

CHARACTERIZATION OF MULTIPLIERS FROM ONE MODEL SPACE TO ANOTHER

THEOREM 1 (F.-HARTMANN-ROSS, 2016)

For inner functions u and v and $\varphi \in H^2$, the following are equivalent:

Observe that $\mathcal{M}(u, u) = \mathbb{C}$.

Indeed, let $\varphi \in \mathcal{M}(u, u)$. Then according to Theorem 1, we have $\varphi \in \ker T_{\overline{z}\overline{u}u} = \ker T_{\overline{z}} = \mathbb{C}$.

Note that Theorem 1 was generalized recently by Camara–Partington in the context of the kernels of Toeplitz operators.

Multiplier problem <—> two classical and difficult problems in function and operator theory :

- Carleson measures for model spaces. Works by Cohn, Treil-Volberg, Baranov and recently by Lacey-Sawyer-Shen-Uriarte-Tuero-Wick....
- Wernel of Toeplitz operators. Works by Sarason, Makarov-Poltoratski,....

\hookrightarrow Questions

- Are there unbounded multipliers?
- Crofoot's question : are there unbounded *onto* multipliers?
- Are there more explicit characterizations of multipliers?

Multiplier problem <—> two classical and difficult problems in function and operator theory :

- Carleson measures for model spaces. Works by Cohn, Treil-Volberg, Baranov and recently by Lacey-Sawyer-Shen-Uriarte-Tuero-Wick....
- Wernel of Toeplitz operators. Works by Sarason, Makarov-Poltoratski,....

\hookrightarrow Questions :

- Are there unbounded multipliers?
- Crofoot's question : are there unbounded *onto* multipliers?
- Are there more explicit characterizations of multipliers?

First evidence : if u and v are Blaschke products, then $\mathcal{M}(u,v) \neq \{0\}$ if and only if $d^o u \leq d^o v$ (degree=number of zeros). We have

Theorem 2 (F.-Hartmann-Ross 2015; Crofoot n = m 1994)

u finite Blaschke product, zeros $\{a_1, \ldots, a_m\}$; v finite Blaschke product, zeros $\{b_1, \ldots, b_n\}$, $m \leq n$, then

$$\mathcal{M}(u,v) = \left\{ q(z) \frac{\prod_{i=1}^{m} (1 - \overline{a_i} z)}{\prod_{j=1}^{n} (1 - \overline{b_j} z)} : q \in \text{Pol}_{n-m} \right\}.$$

First evidence : if u and v are Blaschke products, then $\mathcal{M}(u,v) \neq \{0\}$ if and only if $d^ou \leq d^ov$ (degree=number of zeros). We have

Theorem 2 (F.-Hartmann-Ross 2015; Crofoot n = m 1994)

u finite Blaschke product, zeros $\{a_1, \ldots, a_m\}$; v finite Blaschke product, zeros $\{b_1, \ldots, b_n\}$, $m \leq n$, then

$$\mathcal{M}(u,v) = \left\{ q(z) \frac{\prod_{i=1}^{m} (1 - \overline{a_i} z)}{\prod_{j=1}^{n} (1 - \overline{b_j} z)} : q \in \text{Pol}_{n-m} \right\}.$$

Observe: in this case, all the multipliers are (obviously) bounded.

First evidence : if u and v are Blaschke products, then $\mathcal{M}(u,v) \neq \{0\}$ if and only if $d^o u \leq d^o v$ (degree=number of zeros). We have

Theorem 2 (F.-Hartmann-Ross 2015; Crofoot n = m 1994)

u finite Blaschke product, zeros $\{a_1, \ldots, a_m\}$; v finite Blaschke product, zeros $\{b_1, \ldots, b_n\}$, $m \leq n$, then

$$\mathcal{M}(u,v) = \left\{ q(z) \frac{\prod_{i=1}^{m} (1 - \overline{a_i} z)}{\prod_{j=1}^{n} (1 - \overline{b_j} z)} : q \in \text{Pol}_{n-m} \right\}.$$

Observe: in this case, all the multipliers are (obviously) bounded.

COROLLARY 3

If u is a FBP, $d^ou = n$, v is any inner function which is not a FBP. Then $\mathcal{M}(u,v) \cap H^{\infty} \neq \{0\}$.

First evidence : if u and v are Blaschke products, then $\mathcal{M}(u,v) \neq \{0\}$ if and only if $d^o u \leq d^o v$ (degree=number of zeros). We have

Theorem 2 (F.-Hartmann-Ross 2015; Crofoot n = m 1994)

u finite Blaschke product, zeros $\{a_1, \ldots, a_m\}$; v finite Blaschke product, zeros $\{b_1, \ldots, b_n\}$, $m \leq n$, then

$$\mathcal{M}(u,v) = \left\{ q(z) \frac{\prod_{i=1}^{m} (1 - \overline{a_i} z)}{\prod_{j=1}^{n} (1 - \overline{b_j} z)} : q \in \text{Pol}_{n-m} \right\}.$$

Observe: in this case, all the multipliers are (obviously) bounded.

COROLLARY 3

If u is a FBP, $d^ou = n$, v is any inner function which is not a FBP. Then $\mathcal{M}(u,v) \cap H^{\infty} \neq \{0\}$.

Pf.: Frostman shift: $\exists a \in \mathbb{D}, \ v_a = \frac{v-a}{1-\overline{a}v}$ infinite BP. Let B formed with n zeros from v_a . Then \exists (onto) multipliers $\varphi: K_u \to K_B \subset K_{v_a}$. With Crofoot: $\varphi(1-\overline{a}v): K_u \to K_v$.

BOUNDED AND UNBOUNDED MULTIPLIERS

Let \mathcal{H} be a RKHS on \mathbb{D} with kernel function $k_{\lambda}^{\mathcal{H}}$ and $\varphi \in \mathcal{M}(\mathcal{H}, \mathcal{H})$.

Using reproducing property, we easily see that

$$M_{\varphi}^* k_{\lambda}^{\mathcal{H}} = \overline{\varphi(\lambda)} k_{\lambda}^{\mathcal{H}},$$

and if $\forall \lambda \in \mathbb{D}$, $k_{\lambda}^{\mathcal{H}} \neq 0$, then $\sup_{\lambda} |\varphi(\lambda)| \lesssim ||M_{\varphi}^*||$. In particular, φ is bounded.

The situation changes when we consider $\mathcal{M}(u,v)$ for $u \neq v$!

Indeed, if k_{λ}^{u} , k_{λ}^{v} are the reproducing kernels for K_{u} , K_{v} respectively, then we have $M_{\phi}^{*}k_{\lambda}^{v} = \overline{\varphi(\lambda)}k_{\lambda}^{u}$,

and thus
$$\varphi \in \mathcal{M}(u, v) \Longrightarrow |\varphi(\lambda)| \lesssim \frac{\|k_{\lambda}^{v}\|}{\|k_{\lambda}^{u}\|} = \sqrt{\frac{1 - |v(\lambda)|^{2}}{1 - |u(\lambda)|^{2}}}$$

BOUNDED AND UNBOUNDED MULTIPLIERS

Let \mathcal{H} be a RKHS on \mathbb{D} with kernel function $k_{\lambda}^{\mathcal{H}}$ and $\varphi \in \mathcal{M}(\mathcal{H}, \mathcal{H})$.

Using reproducing property, we easily see that

$$M_{\varphi}^* k_{\lambda}^{\mathcal{H}} = \overline{\varphi(\lambda)} k_{\lambda}^{\mathcal{H}},$$

and if $\forall \lambda \in \mathbb{D}$, $k_{\lambda}^{\mathcal{H}} \neq 0$, then $\sup_{\lambda} |\varphi(\lambda)| \lesssim ||M_{\varphi}^*||$. In particular, φ is bounded.

The situation changes when we consider $\mathcal{M}(u,v)$ for $u \neq v!$

Indeed, if k_{λ}^{u} , k_{λ}^{v} are the reproducing kernels for K_{u} , K_{v} respectively, then we have $M_{\phi}^{*}k_{\lambda}^{v} = \overline{\varphi(\lambda)}k_{\lambda}^{u}$,

and thus
$$\varphi \in \mathcal{M}(u, v) \Longrightarrow |\varphi(\lambda)| \lesssim \frac{\|k_{\lambda}^{v}\|}{\|k_{\lambda}^{u}\|} = \sqrt{\frac{1 - |v(\lambda)|^{2}}{1 - |u(\lambda)|^{2}}}$$

Bounded and unbounded multipliers

Let \mathcal{H} be a RKHS on \mathbb{D} with kernel function $k_{\lambda}^{\mathcal{H}}$ and $\varphi \in \mathcal{M}(\mathcal{H}, \mathcal{H})$.

Using reproducing property, we easily see that

$$M_{\varphi}^* k_{\lambda}^{\mathcal{H}} = \overline{\varphi(\lambda)} k_{\lambda}^{\mathcal{H}},$$

and if $\forall \lambda \in \mathbb{D}$, $k_{\lambda}^{\mathcal{H}} \neq 0$, then $\sup_{\lambda} |\varphi(\lambda)| \lesssim ||M_{\varphi}^{*}||$. In particular, φ is bounded.

The situation changes when we consider $\mathcal{M}(u,v)$ for $u \neq v!$

Indeed, if k_{λ}^{u} , k_{λ}^{v} are the reproducing kernels for K_{u} , K_{v} respectively, then we have $M_{\varphi}^{*}k_{\lambda}^{v} = \overline{\varphi(\lambda)}k_{\lambda}^{u}$,

and thus
$$\varphi \in \mathcal{M}(u, v) \Longrightarrow |\varphi(\lambda)| \lesssim \frac{\|k_{\lambda}^v\|}{\|k_{\lambda}^u\|} = \sqrt{\frac{1 - |v(\lambda)|^2}{1 - |u(\lambda)|^2}}.$$

Existence of an unbounded multiplier

For $u = BS_{\mu}$ inner, we define the boundary spectrum

$$\sigma(u) = \{\zeta \in \mathbb{T} : \liminf_{z \to \zeta} |u(z)| = 0\} = \operatorname{supp}(\mu) \cup (\mathbb{T} \cap B^{-1}(\{0\})).$$

Recall that every $f \in K_u$ can be extended analytically through $\mathbb{T} \setminus \sigma(u)$.

Theorem 4 (F-Hartmann-Ross, 2016)

Let u, I inner and suppose $\sigma(u) \cap \sigma(I) = \emptyset$. If v = uI, then $\mathcal{M}(u, v) = K_{zI}$. Furthermore, if I is not a finite Blaschke product, then $\mathcal{M}(u, v)$ contains unbounded functions.

Pf.: Observe that $\ker T_{\overline{zv}u} = \ker T_{\overline{zI}} = K_{zI}$. Hence, by Theorem 1, we just need to check that $|\varphi|^2 dm$ is a Carleson measure for K_u for every $\varphi \in K_{zI}$.

Existence of an unbounded multiplier

For $u = BS_{\mu}$ inner, we define the boundary spectrum

$$\sigma(u) = \{\zeta \in \mathbb{T} : \liminf_{z \to \zeta} |u(z)| = 0\} = \operatorname{supp}(\mu) \cup (\mathbb{T} \cap B^{-1}(\{0\})).$$

Recall that every $f \in K_u$ can be extended analytically through $\mathbb{T} \setminus \sigma(u)$.

THEOREM 4 (F-HARTMANN-ROSS, 2016)

Let u, I inner and suppose $\sigma(u) \cap \sigma(I) = \emptyset$. If v = uI, then $\mathcal{M}(u, v) = K_{zI}$. Furthermore, if I is not a finite Blaschke product, then $\mathcal{M}(u, v)$ contains unbounded functions.

Pf. : Observe that $\ker T_{\overline{zv}u} = \ker T_{\overline{zI}} = K_{zI}$. Hence, by Theorem 1, we just need to check that $|\varphi|^2 dm$ is a Carleson measure for K_u for every $\varphi \in K_{zI}$.

Existence of an unbounded multiplier

For $u = BS_{\mu}$ inner, we define the boundary spectrum

$$\sigma(u) = \{\zeta \in \mathbb{T} : \liminf_{z \to \zeta} |u(z)| = 0\} = \operatorname{supp}(\mu) \cup (\mathbb{T} \cap B^{-1}(\{0\})).$$

Recall that every $f \in K_u$ can be extended analytically through $\mathbb{T} \setminus \sigma(u)$.

THEOREM 4 (F-HARTMANN-ROSS, 2016)

Let u, I inner and suppose $\sigma(u) \cap \sigma(I) = \emptyset$. If v = uI, then $\mathcal{M}(u, v) = K_{zI}$. Furthermore, if I is not a finite Blaschke product, then $\mathcal{M}(u, v)$ contains unbounded functions.

Pf. : Observe that $\ker T_{\overline{zv}u} = \ker T_{\overline{zI}} = K_{zI}$. Hence, by Theorem 1, we just need to check that $|\varphi|^2 dm$ is a Carleson measure for K_u for every $\varphi \in K_{zI}$.

Let V be a neighborhood of $\sigma(I)$ far from $\sigma(u)$ and $\varphi \in K_{zI}$. Then φ extends analytically through \mathbb{T} outside V, and can be assumed bounded there. Similarly every $f \in K_u$ extends analytically in V and can be assumed to be bounded there. Hence, for every $f \in K_u$, we have

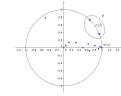


$$\int_{\mathbb{T}} |\varphi f|^2 dm = \int_{\mathbb{T}\backslash V} |\varphi f|^2 dm + \int_{V \cap \mathbb{T}} |\varphi f|^2 dm
\lesssim \int_{\mathbb{T}\backslash V} |f|^2 dm + \int_{V \cap \mathbb{T}} |\varphi|^2 dm < \infty$$

Hence $\mathcal{M}(u,v) = K_{zI}$

Now, observe that if I is not a finite Blaschke product, then $\dim K_{zI} = \infty$ and thus K_{zI} contains unbounded functions (Grothendieck's theorem).

Let V be a neighborhood of $\sigma(I)$ far from $\sigma(u)$ and $\varphi \in K_{zI}$. Then φ extends analytically through \mathbb{T} outside V, and can be assumed bounded there. Similarly every $f \in K_u$ extends analytically in V and can be assumed to be bounded there. Hence, for every $f \in K_u$, we have



$$\int_{\mathbb{T}} |\varphi f|^2 dm = \int_{\mathbb{T}\backslash V} |\varphi f|^2 dm + \int_{V \cap \mathbb{T}} |\varphi f|^2 dm$$

$$\lesssim \int_{\mathbb{T}\backslash V} |f|^2 dm + \int_{V \cap \mathbb{T}} |\varphi|^2 dm < \infty$$

Hence $\mathcal{M}(u,v) = K_{zI}$.

Now, observe that if I is not a finite Blaschke product, then $\dim K_{zI} = \infty$ and thus K_{zI} contains unbounded functions (Grothendieck's theorem).

Let V be a neighborhood of $\sigma(I)$ far from $\sigma(u)$ and $\varphi \in K_{zI}$. Then φ extends analytically through \mathbb{T} outside V, and can be assumed bounded there. Similarly every $f \in K_u$ extends analytically in V and can be assumed to be bounded there. Hence, for every $f \in K_u$, we have

$$\int_{\mathbb{T}} |\varphi f|^2 dm = \int_{\mathbb{T} \setminus V} |\varphi f|^2 dm + \int_{V \cap \mathbb{T}} |\varphi f|^2 dm$$

$$\lesssim \int_{\mathbb{T} \setminus V} |f|^2 dm + \int_{V \cap \mathbb{T}} |\varphi|^2 dm < \infty$$

Hence $\mathcal{M}(u,v) = K_{zI}$.

Now, observe that if I is not a finite Blaschke product, then $\dim K_{zI} = \infty$ and thus K_{zI} contains unbounded functions (Grothendieck's theorem).

A SITUATION WHERE ALL MULTIPLIERS ARE BOUNDED

THEOREM 5 (F-HARTMANN-Ross, 2016)

Let u, v inner. If, for some $\varepsilon_1, \varepsilon_2 \in (0, 1)$, $\{|v| < \varepsilon_2\} \subset \{|u| < \varepsilon_1\}$, then $\mathcal{M}(u, v) = \ker T_{\overline{z}vu} \cap H^{\infty}$.

The proof is based on the following result of Cohn: Let θ be an inner function and $f \in K_{\theta}$. If f is bounded on $\{|\theta| < \varepsilon\}$ for some $\varepsilon \in (0,1)$, then $f \in H^{\infty}$.

A SITUATION WHERE ALL MULTIPLIERS ARE BOUNDED

THEOREM 5 (F-HARTMANN-Ross, 2016)

Let u, v inner. If, for some $\varepsilon_1, \varepsilon_2 \in (0, 1)$, $\{|v| < \varepsilon_2\} \subset \{|u| < \varepsilon_1\}$, then $\mathcal{M}(u, v) = \ker T_{\overline{zv}u} \cap H^{\infty}$.

The proof is based on the following result of Cohn: Let θ be an inner function and $f \in K_{\theta}$. If f is bounded on $\{|\theta| < \varepsilon\}$ for some $\varepsilon \in (0,1)$, then $f \in H^{\infty}$.

Upper half plane \mathbb{C}_+

A situation when the Carleson condition becomes more tractable: Let U be an inner in \mathbb{C}_+ such that $|U'(x)| \approx 1$, $x \in \mathbb{R}$. Let μ be a Borel measure on \mathbb{R} . Then, Baranov proved that μ is a Carleson measure for K_U if and only if $\sup_{x \in \mathbb{R}} \mu([x, x+1]) < \infty$.

THEOREM 6 (F-HARTMANN-ROSS, 2016)

Let U, V inner in \mathbb{C}_+ with $|U'(x)| \times 1$, $x \in \mathbb{R}$. Then

$$\mathcal{M}(U,V) = \left\{ \Phi \in (z+i) \ker T_{\overline{b_i^+ V}U} : \sup_{x \in \mathbb{R}} \int_x^{x+1} |\Phi(t)|^2 dt < \infty \right\}.$$

Here $b_i^+(z) = (z - i)/(z + i)$.

UPPER HALF PLANE \mathbb{C}_+

A situation when the Carleson condition becomes more tractable : Let U be an inner in \mathbb{C}_+ such that $|U'(x)| \leq 1$, $x \in \mathbb{R}$. Let μ be a Borel measure on \mathbb{R} . Then, Baranov proved that μ is a Carleson measure for K_U if and only if $\sup_{x \in \mathbb{R}} \mu([x, x+1]) < \infty$.

THEOREM 6 (F-HARTMANN-ROSS, 2016)

Let U, V inner in \mathbb{C}_+ with $|U'(x)| \approx 1$, $x \in \mathbb{R}$. Then

$$\mathcal{M}(U,V) = \left\{ \Phi \in (z+i) \ker T_{\overline{b_i^+ V}U} : \sup_{x \in \mathbb{R}} \int_x^{x+1} |\Phi(t)|^2 dt < \infty \right\}.$$

Here
$$b_i^+(z) = (z - i)/(z + i)$$
.

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

Paley-Wiener space $\Theta(z) = e^{i2\pi z} : K_{\Theta} = e^{i\pi z} PW$.

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

Paley-Wiener space
$$\Theta(z) = e^{i2\pi z} : K_{\Theta} = e^{i\pi z} PW$$
.

Set
$$\Lambda_{\delta} = \{k - \delta + ik^{-4\delta} : k \geq 1\} \cup \{-k + \delta + ik^{-4\delta} : k \geq 1\} \cup \{-i\}, \delta \in (0, 1/4), I_{\delta}$$
 the associated Blaschke product, E_{δ} the canonical product vanishing on $\overline{\Lambda_{\delta}}$, so that $I_{\delta} = E_{\delta}^*/E_{\delta}$. $(f^*(z) = \overline{f(\overline{z})})$

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

Paley-Wiener space $\Theta(z) = e^{i2\pi z} : K_{\Theta} = e^{i\pi z} PW$.

Set $\Lambda_{\delta} = \{k - \delta + ik^{-4\delta} : k \geq 1\} \cup \{-k + \delta + ik^{-4\delta} : k \geq 1\} \cup \{-i\}, \delta \in (0, 1/4), I_{\delta} \text{ the associated Blaschke product, } E_{\delta} \text{ the canonical product vanishing on } \overline{\Lambda_{\delta}}, \text{ so that } I_{\delta} = E_{\delta}^*/E_{\delta}. (f^*(z) = \overline{f(\overline{z})})$

Lyubarskii-Seip (2002) : $PW = E_{\delta}K_{I_{\delta}}$.

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

Paley-Wiener space
$$\Theta(z) = e^{i2\pi z} : K_{\Theta} = e^{i\pi z} PW$$
.

Set
$$\Lambda_{\delta} = \{k - \delta + ik^{-4\delta} : k \geq 1\} \cup \{-k + \delta + ik^{-4\delta} : k \geq 1\} \cup \{-i\}, \delta \in (0, 1/4), I_{\delta} \text{ the associated Blaschke product, } E_{\delta} \text{ the canonical product vanishing on } \overline{\Lambda_{\delta}}, \text{ so that } I_{\delta} = E_{\delta}^*/E_{\delta}. (f^*(z) = \overline{f(\overline{z})})$$

Lyubarskii-Seip (2002) :
$$PW = E_{\delta}K_{I_{\delta}}$$
.

Hence, setting
$$\varphi_{\delta} = e^{i\pi z} E_{\delta}$$
, we have
$$\varphi_{\delta} K_{I_{\delta}} = e^{i\pi z} E_{\delta} K_{\delta} = e^{i\pi z} PW = K_{\Theta}$$

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

Paley-Wiener space
$$\Theta(z) = e^{i2\pi z} : K_{\Theta} = e^{i\pi z} PW$$
.

Set
$$\Lambda_{\delta} = \{k - \delta + ik^{-4\delta} : k \geq 1\} \cup \{-k + \delta + ik^{-4\delta} : k \geq 1\} \cup \{-i\}, \delta \in (0, 1/4), I_{\delta} \text{ the associated Blaschke product, } E_{\delta} \text{ the canonical product vanishing on } \overline{\Lambda_{\delta}}, \text{ so that } I_{\delta} = E_{\delta}^*/E_{\delta}. (f^*(z) = \overline{f(\overline{z})})$$

Lyubarskii-Seip (2002) : $PW = E_{\delta}K_{I_{\delta}}$.

Hence, setting
$$\varphi_{\delta} = e^{i\pi z} E_{\delta}$$
, we have

$$\varphi_{\delta}K_{I_{\delta}} = e^{i\pi z}E_{\delta}K_{\delta} = e^{i\pi z}PW = K_{\Theta}$$

So : $\varphi_{\delta} \in \mathcal{M}(I_{\delta}, \Theta)$ onto multiplier.

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

Paley-Wiener space
$$\Theta(z) = e^{i2\pi z} : K_{\Theta} = e^{i\pi z} PW$$
.

Set
$$\Lambda_{\delta} = \{k - \delta + ik^{-4\delta} : k \geq 1\} \cup \{-k + \delta + ik^{-4\delta} : k \geq 1\} \cup \{-i\}, \delta \in (0, 1/4), I_{\delta}$$
 the associated Blaschke product, E_{δ} the canonical product vanishing on $\overline{\Lambda_{\delta}}$, so that $I_{\delta} = E_{\delta}^*/E_{\delta}$. $(f^*(z) = \overline{f(\overline{z})})$

Lyubarskii-Seip (2002) : $PW = E_{\delta}K_{I_{\delta}}$.

Hence, setting
$$\varphi_{\delta} = e^{i\pi z} E_{\delta}$$
, we have
$$\varphi_{\delta} K_{I_{\delta}} = e^{i\pi z} E_{\delta} K_{\delta} = e^{i\pi z} PW = K_{\Theta}$$

So : $\varphi_{\delta} \in \mathcal{M}(I_{\delta}, \Theta)$ onto multiplier.

By standard estimates (Lyubarskii-Seip) :

$$|E_{\delta}(x)| \simeq (1+|x|)^{2\delta} \operatorname{dist}(x,\Lambda_{\delta}), \qquad x \in \mathbb{R},$$

In 1994, Crofoot examinated onto multipliers between model spaces. He only gave examples of bounded onto-multipliers and asked whether there are unbounded ones.

Paley-Wiener space
$$\Theta(z) = e^{i2\pi z} : K_{\Theta} = e^{i\pi z} PW$$
.

Set
$$\Lambda_{\delta} = \{k - \delta + ik^{-4\delta} : k \geq 1\} \cup \{-k + \delta + ik^{-4\delta} : k \geq 1\} \cup \{-i\}, \delta \in (0, 1/4), I_{\delta} \text{ the associated Blaschke product, } E_{\delta} \text{ the canonical product vanishing on } \overline{\Lambda_{\delta}}, \text{ so that } I_{\delta} = E_{\delta}^*/E_{\delta}. (f^*(z) = \overline{f(\overline{z})})$$

Lyubarskii-Seip (2002) : $PW = E_{\delta}K_{I_{\delta}}$.

Hence, setting
$$\varphi_{\delta} = e^{i\pi z} E_{\delta}$$
, we have
$$\varphi_{\delta} K_{I_{\delta}} = e^{i\pi z} E_{\delta} K_{\delta} = e^{i\pi z} PW = K_{\Theta}$$

So : $\varphi_{\delta} \in \mathcal{M}(I_{\delta}, \Theta)$ onto multiplier.

By standard estimates (Lyubarskii-Seip) :

$$|E_{\delta}(x)| \simeq (1+|x|)^{2\delta} \operatorname{dist}(x,\Lambda_{\delta}), \qquad x \in \mathbb{R},$$

In
$$x_k = (k - \delta) + 1/2$$
: $\operatorname{dist}(x_k, \Lambda_\delta) \ge 1/2$, so that $|\varphi(x_k)| \simeq (1 + x_k)^{2\delta} \to +\infty$ unbounded.

NON TRIVIALITY OF $\ker T_{\overline{V}U}$.

Assume that U, V are inner functions in \mathbb{C}_+ and $|U'(x)| \times 1$, $x \in \mathbb{R}$. Let $\Phi \in \ker T_{\overline{V}U}$. Then, there is a function $g \in H^2_+$ such that $\Phi(x)U(x)\overline{V(x)} = \overline{g(x)}, x \in \mathbb{R}$.

Then

$$\frac{\Phi(x)}{x+i}U(x)\overline{V(x)b_i^+(x)} = \frac{\overline{g(x)}}{x+i}\frac{x+i}{x-i} = \overline{\left(\frac{g(x)}{x+i}\right)} \in \overline{H_+^2},$$

which gives $\Phi \in (z+i) \ker T_{\overline{Vb_i^+}U}$.

Moreover, using $\Phi \in H^2_+$, we also have

$$\sup_{x \in \mathbb{R}} \int_{x}^{x+1} |\Phi(t)|^{2} dt < \infty,$$

whence Theorem 6 $\implies \Phi \in \mathcal{M}(U,V)$. We thus deduce that

$$\ker T_{\overline{V}U} \neq \{0\} \Longrightarrow \mathcal{M}(U,V) \neq \{0\}.$$

NON TRIVIALITY OF $\ker T_{\overline{V}U}$.

Assume that U, V are inner functions in \mathbb{C}_+ and $|U'(x)| \approx 1$, $x \in \mathbb{R}$. Let $\Phi \in \ker T_{\overline{V}U}$. Then, there is a function $g \in H^2_+$ such that $\Phi(x)U(x)\overline{V(x)} = \overline{g(x)}, x \in \mathbb{R}$.

Then

$$\frac{\Phi(x)}{x+i}U(x)\overline{V(x)}b_i^+(x) = \frac{\overline{g(x)}}{x+i}\frac{x+i}{x-i} = \overline{\left(\frac{g(x)}{x+i}\right)} \in \overline{H_+^2},$$

which gives $\Phi \in (z+i) \ker T_{\overline{Vb_i^+}U}$.

Moreover, using $\Phi \in H^2_+$, we also have

$$\sup_{x \in \mathbb{R}} \int_{x}^{x+1} |\Phi(t)|^{2} dt < \infty,$$

whence Theorem 6 $\implies \Phi \in \mathcal{M}(U,V)$. We thus deduce that

$$\ker T_{\overline{V}U} \neq \{0\} \Longrightarrow \mathcal{M}(U,V) \neq \{0\}.$$

NON TRIVIALITY OF $\ker T_{\overline{V}U}$.

Assume that U, V are inner functions in \mathbb{C}_+ and $|U'(x)| \times 1$, $x \in \mathbb{R}$. Let $\Phi \in \ker T_{\overline{V}U}$. Then, there is a function $g \in H^2_+$ such that $\Phi(x)U(x)\overline{V(x)} = \overline{g(x)}, x \in \mathbb{R}$.

Then

$$\frac{\Phi(x)}{x+i}U(x)\overline{V(x)}b_i^+(x) = \frac{\overline{g(x)}}{x+i}\frac{x+i}{x-i} = \overline{\left(\frac{g(x)}{x+i}\right)} \in \overline{H_+^2},$$

which gives $\Phi \in (z+i) \ker T_{Vb_i^+U}$.

Moreover, using $\Phi \in H^2_+$, we also have

$$\sup_{x \in \mathbb{R}} \int_{x}^{x+1} |\Phi(t)|^2 dt < \infty,$$

whence Theorem 6 $\implies \Phi \in \mathcal{M}(U,V)$. We thus deduce that

$$\ker T_{\overline{V}U} \neq \{0\} \Longrightarrow \mathcal{M}(U,V) \neq \{0\}.$$

We denote by $L_{\Pi}^1 = L^1(\mathbb{R}, \Pi)$, where Π is the Poisson measure on \mathbb{R} , that is $d\Pi(t) = \frac{dt}{1+t^2}$. Recall also that the Hilbert transform of a function $h \in L_{\Pi}^1$ is defined as the singular integral

$$\tilde{h}(x) = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x-t|>\varepsilon} \left(\frac{1}{x-t} + \frac{t}{1+t^2} \right) h(t) \, dt.$$

THEOREM 7 (F-RUPAM, 2018)

Let U, V be MIF with $|U'(x)| \approx 1$, $x \in \mathbb{R}$, and let $m := \arg(U) - \arg(Vb_i^+)$ on \mathbb{R} . Assume that either $m \notin \widetilde{L_{\Pi}^1}$ or if $m = \tilde{h}$ for some $h \in L_{\Pi}^1$, then $e^{-h} \notin L^1$. TFAE:

- **1** $\mathcal{M}(U,V) \neq \{0\}$

We denote by $L_{\Pi}^1 = L^1(\mathbb{R}, \Pi)$, where Π is the Poisson measure on \mathbb{R} , that is $d\Pi(t) = \frac{dt}{1+t^2}$. Recall also that the Hilbert transform of a function $h \in L_{\Pi}^1$ is defined as the singular integral

$$\tilde{h}(x) = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x-t|>\varepsilon} \left(\frac{1}{x-t} + \frac{t}{1+t^2} \right) h(t) \, dt.$$

THEOREM 7 (F-RUPAM, 2018)

Let U, V be MIF with $|U'(x)| \approx 1$, $x \in \mathbb{R}$, and let $m := \arg(U) - \arg(Vb_i^+)$ on \mathbb{R} . Assume that either $m \notin \widetilde{L}_\Pi^1$ or if $m = \tilde{h}$ for some $h \in L_\Pi^1$, then $e^{-h} \notin L^1$. TFAE:

- $\mathcal{M}(U,V) \neq \{0\};$

Let $\Lambda \subset \mathbb{C}_+$ and let $D := D^*(\Lambda)$ be the Beurling–Malliavin density of Λ . We denote by $S(z) := e^{iz}$.

EXAMPLE 1

Let $U = B_{\Lambda}S^a$ and $V = S^b$, where $a, b \ge 0$ and B_{Λ} is an infinite BP. Assume that $|U'(x)| \approx 1, x \in \mathbb{R}$ and $b - a \ne 2\pi D$. Then

$$\mathcal{M}(U,V) \neq \{0\} \iff b-a > 2\pi D.$$

In particular if $\Lambda = \{n+i\}_{n \in \mathbb{Z}}$, then D = 1. Thus

$$\mathcal{M}(U,V) \neq \{0\} \iff b-a > 2\pi$$

Let $\Lambda \subset \mathbb{C}_+$ and let $D := D^*(\Lambda)$ be the Beurling-Malliavin density of Λ . We denote by $S(z) := e^{iz}$.

Example 1

Let $U = B_{\Lambda}S^a$ and $V = S^b$, where $a, b \ge 0$ and B_{Λ} is an infinite BP. Assume that $|U'(x)| \approx 1, x \in \mathbb{R}$ and $b - a \ne 2\pi D$. Then

$$\mathcal{M}(U,V) \neq \{0\} \iff b-a > 2\pi D.$$

In particular if $\Lambda = \{n+i\}_{n \in \mathbb{Z}}$, then D = 1. Thus

$$\mathcal{M}(U,V) \neq \{0\} \iff b-a > 2\pi.$$

Let $\Lambda \subset \mathbb{C}_+$ and let $D := D^*(\Lambda)$ be the Beurling–Malliavin density of Λ . We denote by $S(z) := e^{iz}$.

Example 1

Let $U = B_{\Lambda}S^a$ and $V = S^b$, where $a, b \ge 0$ and B_{Λ} is an infinite BP. Assume that $|U'(x)| \approx 1$, $x \in \mathbb{R}$ and $b - a \ne 2\pi D$. Then

$$\mathcal{M}(U,V) \neq \{0\} \iff b-a > 2\pi D.$$

In particular if $\Lambda = \{n+i\}_{n \in \mathbb{Z}}$, then D = 1. Thus

$$\mathcal{M}(U,V) \neq \{0\} \iff b-a > 2\pi.$$

THE RANGE SPACES OF CO ANALYTIC TOEPLITZ OPERATORS

Let $a \in H^{\infty}$ outer and denote by $\mathfrak{M}(\bar{a}) = T_{\bar{a}}H^2$ equipped with the range norm

$$||T_{\bar{a}}f||_{\bar{a}} = ||f||_2, \qquad f \in H^2.$$

Note that $\mathfrak{M}(\bar{a})$ are RKHS which are boundedly contained in H^2 . They are closely connected to de Branges–Rovnyak spaces.

Given $a_1, a_2 \in H^{\infty}$ outer, study

$$\mathcal{M}(a_1, a_2) := \{ \varphi \in \mathcal{O}(\mathbb{D}) : \forall f \in \mathfrak{M}(\overline{a_1}), \varphi f \in \mathfrak{M}(\overline{a_2}) \}.$$

When $a_1 = a_2 = a$, we set $\mathcal{M}(a) = \mathcal{M}(a, a)$.

THE RANGE SPACES OF CO ANALYTIC TOEPLITZ OPERATORS

Let $a\in H^\infty$ outer and denote by $\mathfrak{M}(\bar{a})=T_{\bar{a}}H^2$ equipped with the range norm

$$||T_{\bar{a}}f||_{\bar{a}} = ||f||_2, \qquad f \in H^2.$$

Note that $\mathfrak{M}(\bar{a})$ are RKHS which are boundedly contained in H^2 . They are closely connected to de Branges–Rovnyak spaces.

Given $a_1, a_2 \in H^{\infty}$ outer, study

$$\mathcal{M}(a_1, a_2) := \{ \varphi \in \mathcal{O}(\mathbb{D}) : \forall f \in \mathfrak{M}(\overline{a_1}), \varphi f \in \mathfrak{M}(\overline{a_2}) \}.$$

When $a_1 = a_2 = a$, we set $\mathcal{M}(a) = \mathcal{M}(a, a)$.

A CHARACTERIZATION IN TERMS OF HANKEL OPERATORS

Note that $1 \in \mathfrak{M}(\overline{a})$. Thus, if $\varphi \in \mathcal{M}(a)$, we get that $\varphi \in \mathfrak{M}(\overline{a})$. Using an argument with reproducing kernel, we also see that $\varphi \in H^{\infty}$. Thus

$$\mathcal{M}(a) \subset \mathfrak{M}(\overline{a}) \cap H^{\infty}.$$

Theorem 8 (Lotto-Sarason, 1993)

Let $\varphi \in M(\overline{a}) \cap H^{\infty}$ and let $\psi \in H^2$ such that $\varphi = T_{\overline{a}}\psi$. Then $\varphi \in \mathcal{M}(a) \Longleftrightarrow H_{\overline{\psi}}^* H_{\overline{a}} \text{ is bounded on } H^2.$

A CHARACTERIZATION IN TERMS OF HANKEL OPERATORS

Note that $1 \in \mathfrak{M}(\overline{a})$. Thus, if $\varphi \in \mathcal{M}(a)$, we get that $\varphi \in \mathfrak{M}(\overline{a})$. Using an argument with reproducing kernel, we also see that $\varphi \in H^{\infty}$. Thus

$$\mathcal{M}(a) \subset \mathfrak{M}(\overline{a}) \cap H^{\infty}.$$

THEOREM 8 (LOTTO-SARASON, 1993)

Let $\varphi \in M(\overline{a}) \cap H^{\infty}$ and let $\psi \in H^2$ such that $\varphi = T_{\overline{a}}\psi$. Then $\varphi \in \mathcal{M}(a) \iff H_{\overline{\psi}}^* H_{\overline{a}} \text{ is bounded on } H^2.$

We define \mathcal{A} as the class of polynomials whose all the zeros lies on \mathbb{T} . We proved that if $a \in \mathcal{A}$, then

$$\mathfrak{M}(\overline{a}) = aH^2 \oplus \mathrm{Pol}_{N-1},$$

where N is the degree of a.

THEOREM 9 (F.-HARTMANN-Ross, 2018)

Let $a \in A$. Then

$$\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}.$$

Cons. : if $a \in \mathcal{A}$, then $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra! This is not true in general (Sarason and Lotto constructed an example).

- ① Characterize a such that $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra.
- ② When $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra, does it imply that necessarily $\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}$?

We define \mathcal{A} as the class of polynomials whose all the zeros lies on \mathbb{T} . We proved that if $a \in \mathcal{A}$, then

$$\mathfrak{M}(\overline{a}) = aH^2 \oplus \mathrm{Pol}_{N-1},$$

where N is the degree of a.

THEOREM 9 (F.-HARTMANN-Ross, 2018)

Let $a \in \mathcal{A}$. Then

$$\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}.$$

Cons. : if $a \in \mathcal{A}$, then $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra! This is not true in general (Sarason and Lotto constructed an example).

- ① Characterize a such that $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra.
- ② When $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra, does it imply that necessarily $\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}$?

We define \mathcal{A} as the class of polynomials whose all the zeros lies on \mathbb{T} . We proved that if $a \in \mathcal{A}$, then

$$\mathfrak{M}(\overline{a}) = aH^2 \oplus \mathrm{Pol}_{N-1},$$

where N is the degree of a.

THEOREM 9 (F.-HARTMANN-ROSS, 2018)

Let $a \in \mathcal{A}$. Then

$$\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}.$$

Cons. : if $a \in \mathcal{A}$, then $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra! This is not true in general (Sarason and Lotto constructed an example).

- Questions:
 - ① Characterize a such that $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra.
 - ② When $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra, does it imply that necessarily $\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}$?

We define \mathcal{A} as the class of polynomials whose all the zeros lies on \mathbb{T} . We proved that if $a \in \mathcal{A}$, then

$$\mathfrak{M}(\overline{a}) = aH^2 \oplus \mathrm{Pol}_{N-1},$$

where N is the degree of a.

THEOREM 9 (F.-HARTMANN-Ross, 2018)

Let $a \in \mathcal{A}$. Then

$$\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}.$$

Cons. : if $a \in \mathcal{A}$, then $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra! This is not true in general (Sarason and Lotto constructed an example). Questions :

- Characterize a such that $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra.
- When $\mathfrak{M}(\overline{a}) \cap H^{\infty}$ is an algebra, does it imply that necessarily $\mathcal{M}(a) = \mathfrak{M}(\overline{a}) \cap H^{\infty}$?

THEOREM 10 (F.-HARTMANN-ROSS, 2018)

Let $a_1, a_2 \in \mathcal{A}$.

• If
$$h = a_1/a_2 \in H^{\infty}$$
, then

$$\mathcal{M}(a_1, a_2) = \{ \varphi \in \mathfrak{M}(\overline{a_2}) : h\varphi \in H^{\infty} \}.$$

$$2 If $k = a_2/a_1 \in H^{\infty}, then$$$

$$\mathcal{M}(a_1, a_2) = k(\mathfrak{M}(\overline{a_1}) \cap H^{\infty}).$$

REFERENCES

- E. Fricain, A. Hartmann and W. Ross, *Multipliers between model spaces*, Studia Mathematics, 240, no. 2 (2018), 177–191.
- E. Fricain and R. Rupam, A note on multipliers between model spaces, New York Journal of Mathematics, 24 (2018), 147–156.
- E. Fricain, A. Hartmann and W. Ross, Range spaces of co-analytic Toeplitz operators, Canadian Journal of Mathematics, to appear.
- E. Fricain, A. Hartmann and W. Ross, *Multipliers between range spaces of co-analytic Toeplitz operators*, Acta Scientiarum Mathematicarum, to appear.

Merci pour votre attention!

Thank you for your attention!