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Multipliers

H1,H2 ⊂ Hol(D) Hilbert spaces of holomorphic functions.

Multipliers :

M(H1,H2) = {ϕ ∈ Hol(D) : ϕf ∈ H2, for all f ∈ H1}

For ϕ ∈M(H1,H2) we also let Mϕ be the multiplication operator
from H1 to H2.

Classical examples :
Let H∞ Hardy space of bounded analytic functions on D, then

M(H2, H2) = H∞ (H2 Hardy space)
M(A2, A2) = H∞ (A2 Bergman space)
M(D,D) ( H∞ (D Dirichlet space) 1

1. For a complete characterization of M(D,D), see O. El-Fallah–K. Kellay–J.
Mashreghi–T. Ransford, A primer on the Dirichlet space, Cambridge Tracts in
Mathematics, 2014.
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Two situations :
H1,H2 are model spaces.

H1,H2 are the range of coanalytic Toeplitz operators equipped
with the range norm.

Both situations can be viewed as examples of Hilbert spaces which are
boundedly contained into H2.

The multiplier’s question in that context appear naturally e.g. in
partial orders on partial isometries (see works of Garcia–Martin–Ross
and Timotin).
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Model spaces

u a non constant inner function : u ∈ H∞, |u| = 1 a.e. on T.
Factorization : u = BSµ, with

Blaschke product : B =
∏
λ∈Λ bλ, bλ(z) =

|λ|
λ

λ− z
1− λz

,∑
λ∈Λ(1− |λ|2) < +∞,

singular inner function : Sµ(z) = exp
(
−
∫
T
ζ + z
ζ − z dµ(ζ)

)
,

0 ≤ µ ⊥ m.

Model space :
Ku = H2 	 uH2 = H2 ∩ uzH2

is the generic backward shift invariant : S∗Ku ⊂ Ku, Sf(z) = zf(z)
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Examples 1
1 Kzn = Poln−1

2 KB =
∨
{kλ : λ ∈ Λ}, kλ(z) = 1

1−λz , Λ ⊂ D Blaschke, no
multiplicity.

3 Kθa is unitarily isomorphic to PWa = F(L2(−a, a)),
θa(z) = S2aδ{1}(z) = e2a z+1

z−1 , a > 0.

More precisely, let C : C+ −→ D, C(w) = z = w−i
w+i .

Let H2
+ be the Hardy space on C+. Then

U : H2 −→ H2
+,Uf(w) =

1√
π(w + i)

f(C(w))

is unitary and UKθa = Kθa◦C .
Note that (θa ◦ C)(w) = e2iaw = S2a(w),
with S(w) = eiw and KS2a = SaPWa.
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A simple example : Crofoot transform

For u, v inner, denoteM(u, v) =M(Ku,Kv).

Frostman shift : ua = u− a
1− au (is Blaschke for a.e. a ∈ D).

Observe, when f ∈ Ku = H2 ∩ uzH2, then f = uzg, g ∈ H2. Hence

1

1− au
f =

u− a
1− au

(
z

g

1− au

)
∈ uazH2,

and hence 1
1− au ∈M(u, ua).

It turns out
√

1− |a|2
1− au isometric multiplier from Ku onto Kua .

Crofoot characterized onto multipliers in terms of arguments of u and
v and a Carleson measure condition.
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Carleson measures for model spaces

The Carleson measure condition is obviously necessary.

Indeed, let ϕ ∈M(u, v). Then, ϕKu ⊂ Kv ⊂ H2, that is∫
T
|f(ζ)|2|ϕ(ζ)|2 dm(ζ) <∞, (f ∈ Ku),

which means that |ϕ|2dm has to be a Carleson measure for Ku.
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Kernel of Toeplitz operators

Toeplitz operator : Tψf = P+(ψf), where ψ ∈ L∞(T),
P+(

∑
n∈Z ane

int) =
∑
n≥0 ane

int Riesz projection.

Observe that Kv = kerTv, S∗u ∈ Ku and T1−u(0)ū is invertible. Using
these facts, along with the identity (on T)

v̄ϕS∗u = v̄ϕz̄(u− u(0)) = (1− u(0)ū)zvuϕ,

it follows that ϕ ∈M(u, v) =⇒ ϕ ∈ kerTzvu.

So to summary, if ϕ ∈M(u, v), then

|ϕ|2dm has to be a Carleson measure for Ku, (1)

and
ϕ ∈ kerTzvu. (2)
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these facts, along with the identity (on T)

v̄ϕS∗u = v̄ϕz̄(u− u(0)) = (1− u(0)ū)zvuϕ,
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Characterization of multipliers from one
model space to another

Theorem 1 (F.-Hartmann-Ross, 2016)

For inner functions u and v and ϕ ∈ H2, the following are
equivalent :

1 ϕ ∈M(u, v) ;
2 ϕ ∈ kerTzvu and |ϕ|2dm is a Carleson measure for Ku.

Observe thatM(u, u) = C.

Indeed, let ϕ ∈M(u, u). Then according to Theorem 1, we have
ϕ ∈ kerTzuu = kerTz = C.

Note that Theorem 1 was generalized recently by Camara–Partington
in the context of the kernels of Toeplitz operators.
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Multiplier problem <—–> two classical and difficult problems in
function and operator theory :

1 Carleson measures for model spaces. Works by Cohn,
Treil–Volberg, Baranov and recently by
Lacey–Sawyer–Shen–Uriarte-Tuero–Wick....

2 Kernel of Toeplitz operators. Works by Sarason,
Makarov–Poltoratski,....

↪→ Questions :

Are there unbounded multipliers ?
Crofoot’s question : are there unbounded onto multipliers ?
Are there more explicit characterizations of multipliers ?
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Finite Blaschke products

First evidence : if u and v are Blaschke products, thenM(u, v) 6= {0}
if and only if dou ≤ dov (degree=number of zeros). We have

Theorem 2 (F.-Hartmann-Ross 2015 ; Crofoot n = m 1994)

u finite Blaschke product, zeros {a1, . . . , am} ; v finite Blaschke
product, zeros {b1, . . . , bn}, m 6 n, then

M(u, v) =
{
q(z)

∏m
i=1(1−aiz)∏n
j=1(1−bjz)

: q ∈ Poln−m

}
.

Observe : in this case, all the multipliers are (obviously) bounded.

Corollary 3

If u is a FBP, dou = n, v is any inner function which is not a FBP.
ThenM(u, v) ∩H∞ 6= {0}.

Pf. : Frostman shift : ∃a ∈ D, va = v−a
1−av infinite BP. Let B formed

with n zeros from va. Then ∃ (onto) multipliers ϕ : Ku → KB ⊂ Kva .
With Crofoot : ϕ(1− av) : Ku → Kv.
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Bounded and unbounded multipliers

Let H be a RKHS on D with kernel function kHλ and ϕ ∈M(H,H).

Using reproducing property, we easily see that

M∗ϕk
H
λ = ϕ(λ)kHλ ,

and if ∀λ ∈ D, kHλ 6= 0, then supλ |ϕ(λ)| . ‖M∗ϕ‖.
In particular, ϕ is bounded.

The situation changes when we considerM(u, v) for u 6= v!

Indeed, if kuλ, k
v
λ are the reproducing kernels for Ku,Kv respectively,

then we have M∗ϕkvλ = ϕ(λ)kuλ,

and thus ϕ ∈M(u, v) =⇒ |ϕ(λ)| . ‖k
v
λ‖

‖kuλ‖
=

√
1− |v(λ)|2
1− |u(λ)|2 .
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Existence of an unbounded multiplier

For u = BSµ inner, we define the boundary spectrum

σ(u) = {ζ ∈ T : lim inf
z→ζ

|u(z)| = 0} = supp(µ) ∪ (T ∩B−1({0})).

Recall that every f ∈ Ku can be extended analytically through
T \ σ(u).

Theorem 4 (F-Hartmann-Ross, 2016)

Let u, I inner and suppose σ(u) ∩ σ(I) = ∅. If v = uI, then
M(u, v) = KzI . Furthermore, if I is not a finite Blaschke product,
thenM(u, v) contains unbounded functions.

Pf. : Observe that kerTzvu = kerTzI = KzI . Hence, by Theorem 1, we
just need to check that |ϕ|2 dm is a Carleson measure for Ku for every
ϕ ∈ KzI .
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Theorem 4 (F-Hartmann-Ross, 2016)

Let u, I inner and suppose σ(u) ∩ σ(I) = ∅. If v = uI, then
M(u, v) = KzI . Furthermore, if I is not a finite Blaschke product,
thenM(u, v) contains unbounded functions.

Pf. : Observe that kerTzvu = kerTzI = KzI . Hence, by Theorem 1, we
just need to check that |ϕ|2 dm is a Carleson measure for Ku for every
ϕ ∈ KzI .
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Let V be a neighborhood of σ(I) far from σ(u) and ϕ ∈ KzI .
Then ϕ extends analytically through T outside
V , and can be assumed bounded there. Similarly every
f ∈ Ku extends analytically in V and can be assumed
to be bounded there. Hence, for every f ∈ Ku, we have

∫
T
|ϕf |2dm =

∫
T\V
|ϕf |2dm+

∫
V ∩T
|ϕf |2dm

.
∫
T\V
|f |2dm+

∫
V ∩T
|ϕ|2dm <∞

HenceM(u, v) = KzI .
Now, observe that if I is not a finite Blaschke product, then
dimKzI =∞ and thus KzI contains unbounded functions
(Grothendieck’s theorem).
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A situation where all multipliers are bounded

Theorem 5 (F-Hartmann-Ross, 2016)

Let u, v inner. If, for some ε1, ε2 ∈ (0, 1), {|v| < ε2} ⊂ {|u| < ε1},
thenM(u, v) = kerTzvu ∩H∞.

The proof is based on the following result of Cohn :
Let θ be an inner function and f ∈ Kθ. If f is bounded on {|θ| < ε}
for some ε ∈ (0, 1), then f ∈ H∞.
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Upper half plane C+

A situation when the Carleson condition becomes more tractable : Let
U be an inner in C+ such that |U ′(x)| � 1, x ∈ R. Let µ be a Borel
measure on R. Then, Baranov proved that µ is a Carleson measure for
KU if and only if supx∈R µ([x, x+ 1]) <∞.

Theorem 6 (F-Hartmann-Ross, 2016)

Let U, V inner in C+ with |U ′(x)| � 1, x ∈ R. Then

M(U, V ) =

{
Φ ∈ (z + i) kerT

b+i V U
: sup
x∈R

∫ x+1

x

|Φ(t)|2 dt <∞
}
.

Here b+i (z) = (z − i)/(z + i).
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An answer to Crofoot’s question

In 1994, Crofoot examinated onto multipliers between model spaces.
He only gave examples of bounded onto-multipliers and asked
whether there are unbounded ones.

Paley-Wiener space Θ(z) = ei2πz : KΘ = eiπzPW .

Set Λδ = {k − δ + ik−4δ : k ≥ 1} ∪ {−k + δ + ik−4δ : k ≥ 1} ∪ {−i},
δ ∈ (0, 1/4), Iδ the associated Blaschke product, Eδ the canonical
product vanishing on Λδ, so that Iδ = E∗δ /Eδ. (f

∗(z) = f(z̄))

Lyubarskii-Seip (2002) : PW = EδKIδ .

Hence, setting ϕδ = eiπzEδ, we have
ϕδKIδ = eiπzEδKδ = eiπzPW = KΘ

So : ϕδ ∈M(Iδ,Θ) onto multiplier.

By standard estimates (Lyubarskii-Seip) :
|Eδ(x)| ' (1 + |x|)2δ dist(x,Λδ), x ∈ R,

In xk = (k − δ) + 1/2 : dist(xk,Λδ) ≥ 1/2, so that
|ϕ(xk)| ' (1 + xk)2δ → +∞ unbounded.
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Non triviality of kerTV U .

Assume that U, V are inner functions in C+ and |U ′(x)| � 1, x ∈ R.
Let Φ ∈ kerTV U . Then, there is a function g ∈ H2

+ such that
Φ(x)U(x)V (x) = g(x), x ∈ R.
Then

Φ(x)

x+ i
U(x)V (x)b+i (x) =

g(x)

x+ i

x+ i

x− i
=

(
g(x)

x+ i

)
∈ H2

+,

which gives Φ ∈ (z + i) kerT
V b+i U

.

Moreover, using Φ ∈ H2
+, we also have

sup
x∈R

∫ x+1

x

|Φ(t)|2 dt <∞,

whence Theorem 6 =⇒ Φ ∈M(U, V ). We thus deduce that

kerTV U 6= {0} =⇒M(U, V ) 6= {0}.
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We denote by L1
Π = L1(R,Π), where Π is the Poisson measure on R,

that is dΠ(t) = dt
1+t2 . Recall also that the Hilbert transform of a

function h ∈ L1
Π is defined as the singular integral

h̃(x) = lim
ε→0

1

π

∫
|x−t|>ε

(
1

x− t
+

t

1 + t2

)
h(t) dt.

Theorem 7 (F-Rupam, 2018)

Let U, V be MIF with |U ′(x)| � 1, x ∈ R, and let
m := arg(U)− arg(V b+i ) on R. Assume that either m /∈ L̃1

Π or if
m = h̃ for some h ∈ L1

Π, then e
−h /∈ L1. TFAE :

1 M(U, V ) 6= {0} ;
2 kerTV U 6= {0}.
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Let Λ ⊂ C+ and let D := D∗(Λ) be the Beurling–Malliavin density of
Λ. We denote by S(z) := eiz.

Example 1

Let U = BΛS
a and V = Sb, where a, b ≥ 0 and BΛ is an infinite BP.

Assume that |U ′(x)| � 1, x ∈ R and b− a 6= 2πD. Then

M(U, V ) 6= {0} ⇐⇒ b− a > 2πD.

In particular if Λ = {n+ i}n∈Z, then D = 1. Thus

M(U, V ) 6= {0} ⇐⇒ b− a > 2π.

20/26
E. Fricain Multipliers between sub-Hardy Hilbert spaces



Let Λ ⊂ C+ and let D := D∗(Λ) be the Beurling–Malliavin density of
Λ. We denote by S(z) := eiz.

Example 1

Let U = BΛS
a and V = Sb, where a, b ≥ 0 and BΛ is an infinite BP.

Assume that |U ′(x)| � 1, x ∈ R and b− a 6= 2πD. Then

M(U, V ) 6= {0} ⇐⇒ b− a > 2πD.

In particular if Λ = {n+ i}n∈Z, then D = 1. Thus

M(U, V ) 6= {0} ⇐⇒ b− a > 2π.

20/26
E. Fricain Multipliers between sub-Hardy Hilbert spaces



Let Λ ⊂ C+ and let D := D∗(Λ) be the Beurling–Malliavin density of
Λ. We denote by S(z) := eiz.

Example 1

Let U = BΛS
a and V = Sb, where a, b ≥ 0 and BΛ is an infinite BP.

Assume that |U ′(x)| � 1, x ∈ R and b− a 6= 2πD. Then

M(U, V ) 6= {0} ⇐⇒ b− a > 2πD.

In particular if Λ = {n+ i}n∈Z, then D = 1. Thus

M(U, V ) 6= {0} ⇐⇒ b− a > 2π.

20/26
E. Fricain Multipliers between sub-Hardy Hilbert spaces



The range spaces of co analytic Toeplitz
operators

Let a ∈ H∞ outer and denote by M(ā) = TāH
2 equipped with the

range norm
‖Tāf‖ā = ‖f‖2, f ∈ H2.

Note that M(ā) are RKHS which are boundedly contained in H2.
They are closely connected to de Branges–Rovnyak spaces.

Given a1, a2 ∈ H∞ outer, study

M(a1, a2) := {ϕ ∈ O(D) : ∀f ∈M(a1), ϕf ∈M(a2)} .

When a1 = a2 = a, we setM(a) =M(a, a).
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Note that M(ā) are RKHS which are boundedly contained in H2.
They are closely connected to de Branges–Rovnyak spaces.

Given a1, a2 ∈ H∞ outer, study

M(a1, a2) := {ϕ ∈ O(D) : ∀f ∈M(a1), ϕf ∈M(a2)} .

When a1 = a2 = a, we setM(a) =M(a, a).

21/26
E. Fricain Multipliers between sub-Hardy Hilbert spaces



A characterization in terms of Hankel
operators

Note that 1 ∈M(a). Thus, if ϕ ∈M(a), we get that ϕ ∈M(a). Using
an argument with reproducing kernel, we also see that ϕ ∈ H∞. Thus

M(a) ⊂M(a) ∩H∞.

Theorem 8 (Lotto–Sarason, 1993)

Let ϕ ∈M(a) ∩H∞ and let ψ ∈ H2 such that ϕ = Taψ. Then

ϕ ∈M(a)⇐⇒ H∗
ψ
Ha is bounded on H2.
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The class A

We define A as the class of polynomials whose all the zeros lies on T.
We proved that if a ∈ A, then

M(a) = aH2 ⊕ PolN−1,

where N is the degree of a.

Theorem 9 (F.-Hartmann–Ross, 2018)

Let a ∈ A. Then
M(a) = M(a) ∩H∞.

Cons. : if a ∈ A, then M(a) ∩H∞ is an algebra ! This is not true in
general (Sarason and Lotto constructed an example).
Questions :

1 Characterize a such that M(a) ∩H∞ is an algebra.
2 When M(a) ∩H∞ is an algebra, does it imply that necessarily
M(a) = M(a) ∩H∞ ?
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Let a ∈ A. Then
M(a) = M(a) ∩H∞.

Cons. : if a ∈ A, then M(a) ∩H∞ is an algebra ! This is not true in
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Theorem 10 (F.-Hartmann–Ross, 2018)

Let a1, a2 ∈ A.
1 If h = a1/a2 ∈ H∞, then

M(a1, a2) = {ϕ ∈M(a2) : hϕ ∈ H∞}.

2 If k = a2/a1 ∈ H∞, then

M(a1, a2) = k(M(a1) ∩H∞).
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Merci pour votre attention !

Thank you for your attention !
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