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The Players: Lp Fourier and Fourier-Stieltjes Algebras

Set up:

G-locally compact group (LCG) with fixed left Haar measure µ.

G: LCG, H: Hilbert space, π : G→ U(H): unitary rep.

πξ,η(x) := 〈π(x)ξ, η〉 is a coefficient function associated with π.

π is continuous if all πξ,η(x)’s are continuous.

ΣG = all equivalence classes of continuous unitary reps.

Definition (Group C∗-algebra)

For f ∈ L1(G) define

‖f‖u = sup{‖π(f )‖B(Hπ)|π ∈ ΣG}
and

C∗(G) = completion of L1(G) wrt ‖ · ‖u
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The Players: Lp Fourier and Fourier-Stieltjes Algebras

Definition ( C∗π(G)-algebra)

Let π ∈ ΣG. Let Nπ be the kernel of π : C∗(G)→ B(Hπ). Then

C∗π(G) = C∗(G)/Nπ

Example

The left-regular representation λ : G→ U(L2(G)) is defined as

(λ(x)f )(y) = f (x−1y).

C∗λ(G) is called the reduced C∗-algebra of G.

Theorem (Hulanicki, 1964)

C∗(G) = C∗λ(G) if and only if G is amenable.
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The Players: Lp Fourier and Fourier-Stieltjes Algebras

Question: If G is non-amenable do there exist intermediate C∗-algebras
between C∗(G) and C∗λ(G)?

Definition (Lp-representations)

π is an Lp representation for 1 ≤ p <∞ if

πξ,ξ(x) := 〈π(x)ξ, ξ〉 ∈ Lp(G)

for a dense set of vectors ξ ∈ Hπ.

πp = {⊕π| π is an LP representation}

Theorem (Brown and Guentner: Okayasu)

If G = F2 and 2 < p < q <∞, then C∗λ(G), C∗πp (G), C∗πq (G) and C∗(G) are
all distinct.
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The Players: Lp Fourier and Fourier-Stieltjes Algebras

Definition (Eymard: Fourier-Stieltjes Algebra of G)

B(G) = {πξ,η|π ∈ ΣG}

with
‖f‖B(G) = min{‖ξ‖‖η‖ |u = πξ,η}.

is a commutative Banach algebra called the Fourier-Stieltjes algebra
of G.

Key Facts:
1) B(G) = (C∗(G))∗

2) B(G) completely determines G.
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The Players: Lp Fourier and Fourier-Stieltjes Algebras

Definition (Arsac: Aπ(G) and Bπ(G))

Given π ∈ ΣG, let

Aπ(G) = span{πξ,η|ξ, η ∈ Hπ}−‖·‖B(G)

and
Bπ(G) = Aπ(G)−w∗ = (C∗π(G))∗

Example

For 1 ≤ p ≤ 2
Aπp (G) = Aλ(G) = A(G)

is called the Fourier Algebra of G .

A(G) is a closed ideal of B(G) with ∆(A(G)) = G.
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The Players: Lp Fourier and Fourier-Stieltjes Algebras

Note: For G = F2 and 1 < p <∞, the Bπp (G)’s are distinct closed
ideals in B(G) containing A(G), but for G amenable

Bπp (G) = B(G)

for all 1 ≤ p <∞.

Question: What can we say about Aπp (G) for 2 < p <∞?

Theorem (Wiersma)

For 2 ≤ p ≤ ∞, Aπp (G) is a closed ideal of B(G) with ∆(Aπ(G)) = G
containing A(G) which completely determines G .
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Aπp(G)) for 2 ≤ p ≤ ∞

Note:
1) For G = F2, we have that for 2 < p < q <∞ that

A(G) ( Aπp (G) ( Aπq (G) ( B0(G)

where B0(G) = B(G) ∩ C0(G) is the Rajchman algebra of G.

2) If G is compact then

A(G) = Aπp (G) = B(G)

for all 1 ≤ p <∞.

Question: For which locally compact groups are the Aπp (G) ideals
distinct for 2 < p <∞?
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Aπp(G) for 2 ≤ p ≤ ∞

Theorem (Wiersma)

If G is non-compact and abelian, then for 2 < p < q <∞ we have that

A(G) ( Aπp (G) ( Aπq (G) ( B0(G)

9 / 1



Aπp(G) for 2 ≤ p <∞

Theorem (F, Tanko, Wiersma)

If G is an infinite discrete group which satisfies one of the following
conditions:

1) G is locally finite,

2) G is elementary amenable,

3) G is a linear group,

4) G has polynomial growth,

then for 2 < p < q <∞ we have

A(G) ( Aπp (G) ( Aπq (G) ( B0(G)

and Aπp (G) is non-separable.

Question: Are the Aπp (G) ideals distinct for 2 < p < q <∞ for every infinite
discrete group?
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Aπp(G) for 2 ≤ p <∞

Definition

1) G is [IN] is G has a neighborhood of the identity that is invariant under
inner automorphisms. ,

2) G is [MAP] if the finite dimensional reps. separate points.

3) G almost connected if G/G0 is compact.

Theorem (F, Tanko, Wiersma)

If G is a non-compact almost connected [IN]-group, then then for
2 < p < q <∞ we have

A(G) ( Aπp (G) ( Aπq (G) ( B0(G)

and Aπp (G) is non-separable.
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Aπp(G) for 2 ≤ p <∞

Theorem (F, Tanko, Wiersma)

If G is either an [IN]-group or a [MAP]-group and if either
1) Aπp (G) = Aπq (G) for some 2 < p < q or
2) Aπp (G) is separable,

then G has a compact, open subgroup.
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Aπp(G) for 2 ≤ p <∞

Question: If G is non-compact and 2 < p < q <∞ must

A(G) ( Aπp (G) ( Aπq (G) ( B0(G)?

Example

If

G = {
(

a b
0 1

)
|a 6= 0,b ∈ R}

is the ax + b group then for any 1 ≤ p <∞, we have

A(G) = Aπp (G) = B0(G)
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Aπp(G) for 2 ≤ p <∞

For Garth!!!

Theorem (F, Tanko, Wiersma)

1) Aπp (F2) is not BSE for any 1 ≤ p <∞

2) A∗(F2) = (
⋃

2<p<∞
Aπp(F2))−‖·‖B(F2) is BSE.
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Aπp(G) for 2 ≤ p <∞

THANK YOU
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