Exotic Ideals in the Fourier-Stieltjes Algebra of a Locally Compact group.

Brian Forrest

Department of Pure Mathematics University of Waterloo

May 21, 2018

(日)

Set up:

• *G*-locally compact group (LCG) with fixed left Haar measure μ .

- *G*-locally compact group (LCG) with fixed left Haar measure μ .
- G: LCG, \mathcal{H} : Hilbert space, $\pi : G \to \mathcal{U}(\mathcal{H})$: unitary rep.

- *G*-locally compact group (LCG) with fixed left Haar measure μ .
- G: LCG, \mathcal{H} : Hilbert space, $\pi : G \to \mathcal{U}(\mathcal{H})$: unitary rep.
- $\pi_{\xi,\eta}(x) := \langle \pi(x)\xi, \eta \rangle$ is a coefficient function associated with π .

- *G*-locally compact group (LCG) with fixed left Haar measure μ .
- G: LCG, \mathcal{H} : Hilbert space, $\pi : G \to \mathcal{U}(\mathcal{H})$: unitary rep.
- $\pi_{\xi,\eta}(x) := \langle \pi(x)\xi, \eta \rangle$ is a coefficient function associated with π .
- π is *continuous* if all $\pi_{\xi,\eta}(x)$'s are continuous.

- *G*-locally compact group (LCG) with fixed left Haar measure μ .
- G: LCG, \mathcal{H} : Hilbert space, $\pi : G \to \mathcal{U}(\mathcal{H})$: unitary rep.
- $\pi_{\xi,\eta}(x) := \langle \pi(x)\xi, \eta \rangle$ is a coefficient function associated with π .
- π is *continuous* if all $\pi_{\xi,\eta}(x)$'s are continuous.
- Σ_G = all equivalence classes of continuous unitary reps.

Set up:

- *G*-locally compact group (LCG) with fixed left Haar measure μ .
- G: LCG, \mathcal{H} : Hilbert space, $\pi : G \to \mathcal{U}(\mathcal{H})$: unitary rep.
- $\pi_{\xi,\eta}(x) := \langle \pi(x)\xi, \eta \rangle$ is a coefficient function associated with π .
- π is *continuous* if all $\pi_{\xi,\eta}(x)$'s are continuous.
- Σ_G = all equivalence classes of continuous unitary reps.

Definition (Group C*-algebra)

For $f \in L^1(G)$ define

$$\|f\|_u = \sup\{\|\pi(f)\|_{\mathcal{B}(\mathcal{H}_\pi)} | \pi \in \Sigma_G\}$$

and

 $C^*(G) =$ completion of $L^1(G)$ wrt $\|\cdot\|_u$

Definition ($C^*_{\pi}(G)$ -algebra)

Let $\pi \in \Sigma_G$. Let \mathcal{N}_{π} be the kernel of $\pi : C^*(G) \to B(\mathcal{H}_{\pi})$. Then

 $C^*_{\pi}(G) = C^*(G)/\mathcal{N}_{\pi}$

Definition ($C^*_{\pi}(G)$ -algebra)

Let $\pi \in \Sigma_G$. Let \mathcal{N}_{π} be the kernel of $\pi : C^*(G) \to B(\mathcal{H}_{\pi})$. Then

 $\mathcal{C}^*_{\pi}(\mathcal{G})=\mathcal{C}^*(\mathcal{G})/\mathcal{N}_{\pi}$

Example

The left-regular representation $\lambda : G \rightarrow \mathcal{U}(L^2(G))$ is defined as

$$(\lambda(x)f)(y) = f(x^{-1}y).$$

 $C^*_{\lambda}(G)$ is called the reduced C^* -algebra of G.

Definition ($C^*_{\pi}(G)$ -algebra)

Let $\pi \in \Sigma_G$. Let \mathcal{N}_{π} be the kernel of $\pi : C^*(G) \to B(\mathcal{H}_{\pi})$. Then

 $\mathcal{C}^*_{\pi}(\mathcal{G})=\mathcal{C}^*(\mathcal{G})/\mathcal{N}_{\pi}$

Example

The left-regular representation $\lambda : G \rightarrow \mathcal{U}(L^2(G))$ is defined as

$$(\lambda(x)f)(y) = f(x^{-1}y).$$

 $C^*_{\lambda}(G)$ is called the reduced C^* -algebra of G.

Theorem (Hulanicki, 1964)

 $C^*(G) = C^*_{\lambda}(G)$ if and only if G is amenable.

Question: If *G* is non-amenable do there exist intermediate C^* -algebras between $C^*(G)$ and $C^*_{\lambda}(G)$?

Question: If *G* is non-amenable do there exist intermediate C^* -algebras between $C^*(G)$ and $C^*_{\lambda}(G)$?

Definition (L_{ρ} -representations)

 π is an L_p representation for $1 \le p < \infty$ if

$$\pi_{\xi,\xi}(x) := \langle \pi(x)\xi, \xi \rangle \in L_p(G)$$

for a dense set of vectors $\xi \in \mathcal{H}_{\pi}$.

 $\pi_{P} = \{ \oplus \pi \mid \pi \text{ is an } L_{P} \text{ representation} \}$

Question: If *G* is non-amenable do there exist intermediate C^* -algebras between $C^*(G)$ and $C^*_{\lambda}(G)$?

Definition (L_{ρ} -representations)

 π is an L_p representation for $1 \le p < \infty$ if

$$\pi_{\xi,\xi}(x) := \langle \pi(x)\xi, \xi \rangle \in L_p(G)$$

for a dense set of vectors $\xi \in \mathcal{H}_{\pi}$.

 $\pi_{P} = \{ \oplus \pi | \ \pi \text{ is an } L_{P} \text{ representation} \}$

Theorem (Brown and Guentner: Okayasu)

If $G = \mathbb{F}_2$ and $2 , then <math>C^*_{\lambda}(G)$, $C^*_{\pi_p}(G)$, $C^*_{\pi_q}(G)$ and $C^*(G)$ are all distinct.

Definition (Eymard: Fourier-Stieltjes Algebra of G)

$$B(G) = \{\pi_{\xi,\eta} | \pi \in \Sigma_G\}$$

with

$$\|f\|_{B(G)} = \min\{\|\xi\|\|\eta\| | u = \pi_{\xi,\eta}\}.$$

is a commutative Banach algebra called the Fourier-Stieltjes algebra of *G*.

Definition (Eymard: Fourier-Stieltjes Algebra of G)

$$B(G) = \{\pi_{\xi,\eta} | \pi \in \Sigma_G\}$$

with

$$\|f\|_{B(G)} = \min\{\|\xi\|\|\eta\| | u = \pi_{\xi,\eta}\}.$$

is a commutative Banach algebra called the Fourier-Stieltjes algebra of *G*.

Key Facts:

1)
$$B(G) = (C^*(G))^*$$

Definition (Eymard: Fourier-Stieltjes Algebra of G)

$$B(G) = \{\pi_{\xi,\eta} | \pi \in \Sigma_G\}$$

with

$$\|f\|_{B(G)} = \min\{\|\xi\|\|\eta\| | u = \pi_{\xi,\eta}\}.$$

is a commutative Banach algebra called the Fourier-Stieltjes algebra of *G*.

Key Facts:

- 1) $B(G) = (C^*(G))^*$
- 2) B(G) completely determines G.

Definition (Arsac: $A_{\pi}(G)$ and $B_{\pi}(G)$)

Given $\pi \in \Sigma_G$, let

$$m{A}_{\pi}(m{G}) = m{span}\{\pi_{\xi,\eta}|\xi,\eta\in\mathcal{H}_{\pi}\}^{-\|\cdot\|_{\mathcal{B}(\mathcal{G})}}$$

and

$$B_{\pi}(G) = A_{\pi}(G)^{-w^*} = (C^*_{\pi}(G))^*$$

Definition (Arsac: $A_{\pi}(G)$ and $B_{\pi}(G)$)

Given $\pi \in \Sigma_G$, let

$$m{A}_{\pi}(m{G}) = m{span}\{\pi_{\xi,\eta}|\xi,\eta\in\mathcal{H}_{\pi}\}^{-\|\cdot\|_{\mathcal{B}(\mathcal{G})}}$$

and

$$B_{\pi}(G) = A_{\pi}(G)^{-w^*} = (C^*_{\pi}(G))^*$$

Example

For $1 \le p \le 2$

$$A_{\pi_{\rho}}(G) = A_{\lambda}(G) = A(G)$$

is called the Fourier Algebra of G.

A(G) is a closed ideal of B(G) with $\Delta(A(G)) = G$.

Note: For $G = \mathbb{F}_2$ and $1 , the <math>B_{\pi_p}(G)$'s are distinct closed ideals in B(G) containing A(G), but for G amenable

 $B_{\pi_p}(G)=B(G)$

for all $1 \le p < \infty$.

Note: For $G = \mathbb{F}_2$ and $1 , the <math>B_{\pi_p}(G)$'s are distinct closed ideals in B(G) containing A(G), but for G amenable

 $B_{\pi_p}(G)=B(G)$

for all $1 \le p < \infty$.

Question: What can we say about $A_{\pi_p}(G)$ for 2 ?

Note: For $G = \mathbb{F}_2$ and $1 , the <math>B_{\pi_p}(G)$'s are distinct closed ideals in B(G) containing A(G), but for G amenable

 $B_{\pi_p}(G)=B(G)$

for all $1 \le p < \infty$.

Question: What can we say about $A_{\pi_p}(G)$ for 2 ?

Theorem (Wiersma)

For $2 \le p \le \infty$, $A_{\pi_p}(G)$ is a closed ideal of B(G) with $\Delta(A_{\pi}(G)) = G$ containing A(G) which completely determines G.

$A_{\pi_p}(G))$ for 2 \leq $p \leq \infty$

Note:

1) For $G = \mathbb{F}_2$, we have that for 2 that

$$A(G)\subsetneq A_{\pi_p}(G)\subsetneq A_{\pi_q}(G)\subsetneq B_0(G)$$

where $B_0(G) = B(G) \cap C_0(G)$ is the Rajchman algebra of *G*.

Note:

1) For $G = \mathbb{F}_2$, we have that for 2 that

$$A(G)\subsetneq A_{\pi_p}(G)\subsetneq A_{\pi_q}(G)\subsetneq B_0(G)$$

where $B_0(G) = B(G) \cap C_0(G)$ is the Rajchman algebra of *G*.

2) If G is compact then

$$A(G) = A_{\pi_{\rho}}(G) = B(G)$$

for all $1 \le p < \infty$.

Note:

1) For $G = \mathbb{F}_2$, we have that for 2 that

$$A(G)\subsetneq A_{\pi_p}(G)\subsetneq A_{\pi_q}(G)\subsetneq B_0(G)$$

where $B_0(G) = B(G) \cap C_0(G)$ is the Rajchman algebra of *G*.

2) If G is compact then

$$A(G) = A_{\pi_{\rho}}(G) = B(G)$$

for all $1 \le p < \infty$.

Question: For which locally compact groups are the $A_{\pi_p}(G)$ ideals distinct for 2 ?

Theorem (Wiersma)

If G is non-compact and abelian, then for 2 we have that

 $A(G)\subsetneq A_{\pi_p}(G)\subsetneq A_{\pi_q}(G)\subsetneq B_0(G)$

Theorem (F, Tanko, Wiersma)

If G is an infinite discrete group which satisfies one of the following conditions:

- 1) G is locally finite,
- 2) G is elementary amenable,
- 3) G is a linear group,
- 4) G has polynomial growth,

then for 2 we have

$$A(G) \subsetneq A_{\pi_p}(G) \subsetneq A_{\pi_q}(G) \subsetneq B_0(G)$$

and $A_{\pi_p}(G)$ is non-separable.

Theorem (F, Tanko, Wiersma)

If G is an infinite discrete group which satisfies one of the following conditions:

- 1) G is locally finite,
- 2) G is elementary amenable,
- 3) G is a linear group,
- 4) G has polynomial growth,

then for 2 we have

$$A(G) \subsetneq A_{\pi_p}(G) \subsetneq A_{\pi_q}(G) \subsetneq B_0(G)$$

and $A_{\pi_p}(G)$ is non-separable.

Question: Are the $A_{\pi_p}(G)$ ideals distinct for 2 for every infinite discrete group?

Definition

- 1) *G* is [IN] is *G* has a neighborhood of the identity that is invariant under inner automorphisms. ,
- 2) G is [MAP] if the finite dimensional reps. separate points.
- 3) G almost connected if G/G_0 is compact.

Definition

- 1) *G* is [IN] is *G* has a neighborhood of the identity that is invariant under inner automorphisms.
- 2) G is [MAP] if the finite dimensional reps. separate points.
- 3) G almost connected if G/G_0 is compact.

Theorem (F, Tanko, Wiersma)

If G is a non-compact almost connected [IN]-group, then then for 2 we have

$$A(G) \subsetneq A_{\pi_p}(G) \subsetneq A_{\pi_q}(G) \subsetneq B_0(G)$$

and $A_{\pi_p}(G)$ is non-separable.

Theorem (F, Tanko, Wiersma)

If G is either an [IN]-group or a [MAP]-group and if either

1)
$$A_{\pi_p}(G) = A_{\pi_q}(G)$$
 for some 2 or

2)
$$A_{\pi_p}(G)$$
 is separable,

then G has a compact, open subgroup.

Question: If *G* is non-compact and 2 must

 $A(G) \subsetneq A_{\pi_p}(G) \subsetneq A_{\pi_q}(G) \subsetneq B_0(G)$?

Question: If *G* is non-compact and 2 must

$$A(G) \subsetneq A_{\pi_p}(G) \subsetneq A_{\pi_q}(G) \subsetneq B_0(G)$$
?

Example

lf

$$G = \{ \left(egin{array}{cc} a & b \ 0 & 1 \end{array}
ight) | a
eq 0, b \in \mathbb{R} \}$$

is the ax + b group then for any $1 \le p < \infty$, we have

$$A(G) = A_{\pi_p}(G) = B_0(G)$$

For Garth!!!

Theorem (F, Tanko, Wiersma)

1)
$$A_{\pi_p}(\mathbb{F}_2)$$
 is not BSE for any $1 \leq p < \infty$

For Garth!!!

Theorem (F, Tanko, Wiersma)

1)
$$A_{\pi_p}(\mathbb{F}_2)$$
 is not BSE for any $1 \le p < \infty$
2) $A_*(\mathbb{F}_2) = (\bigcup_{2 is BSE$

<ロ > < 部 > < 臣 > < 臣 > 臣 の Q () 14/1

THANK YOU

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □