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Commutative Banach algebras

Throughout, we shall be concerned with com-
mutative Banach algebras = CBAs (always
associative and over C).

In particular, we shall think about:

• semi-simple CBAs, equivalently (natural)
Banach function algebras (= BFAs) on a
locally compact space;

• maximal ideals in (unital) uniform algebras -
they are closed, unital subalgebras of (C(X), | · |X),
X compact, that separate the points of X;

• commutative, radical Banach algebras = CRBAs.

We are interested to know if the results are
different if we restrict to separable examples.

We shall list a number of properties related
to factorization; each implies the next; we are
trying to give counter-examples to all reverse
implications (in various classes of CBAs).
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Some notation

Let A be a BFA on a locally compact space

X, and take x ∈ X. Then εx is the evaluation

functional εx : f 7→ f(x) and Mx is the corres-

ponding maximal modular ideal; A is natural

if all characters are evaluation functionals.

Let A be a BFA on X. Then x ∈ X is a

strong boundary point = SBP if, for each

open neighbourhood U of x, there exists f ∈ A
with f(x) = |f |X = 1 and |f |X\U < 1 (includes

peak points).

For a compact plane set X, take R(X) to be

the uniform closure of the algebra of rational

functions restricted to X; it is a natural uni-

form algebra on X.
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Approximate identities

Let A be a CBA. Then an approximate iden-

tity (AI) for A is a net (eν) in A such that

limν eva = a for each a ∈ A; the AI (eν) is a

bounded approximate identity (BAI) if

supν ‖ev‖ < ∞, and a contractive approx-

imate identity (CAI) if ‖ev‖ ≤ 1 for each ν.

(I) Let A be a CBA. Then A has property (I)

if A has a BAI.
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Approximate identities for uniform

algebras

We can characterize when some maximal ideals

have a BAI.

Proposition Let A be a natural uniform alge-

bra on a compact space X, and take x ∈ X.

Then the following conditions on x are equiv-

alent:

(a) x is a strong boundary point;

(b) Mx has a BAI;

(c) Mx has a CAI. 2

A natural uniform algebra on compact X is a

Cole algebra if all points of X are SBPs. Such

algebras not equal to C(X) exist.
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Null sequences

Let E be a Banach space. Then a null se-

quence in E is a sequence (xn) in E such that

limn→∞ ‖xn‖ = 0; the space of null sequences

in E is c0(E), and c0(E) is itself a Banach space

for the norm defined by

‖(xn)‖ = sup{‖xn‖ : (xn) ∈ c0(E)} .

Let A be a CBA. Then null sequences factor

in A if, for each null sequence (an) in A, there

exist a ∈ A and a null sequence (bn) in A such

that an = abn (n ∈ N).

[Important in automatic continuity theory - see

my book.]

(II) Let A be a CBA. Then A has property (II)

if all null sequences in A factor.
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Cohen’s factorization theorem

The following result is one form of the famous

Cohen’s factorization theorem; (much) more

general forms are given in my book.

Theorem Let A be a CBA with a bounded ap-

proximate identity. Then null sequences factor,

and so (I) ⇒ (II) for A. 2

Reverse implication? George Willis (PLMS

1992) gave a separable BFA satisfying (II),

but not (I), and this example can be modi-

fied to also give a separable CRBA with the

same property.

New Theorem There is a maximal ideal in a

uniform algebra satisfying (II), but not (I).

But our example is not separable - an open

point. Proof later.
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Factorization of pairs

Let A be a commutative algebra. Then pairs

factor in A if, for each a1, a2 ∈ A, there exist

a, b1, b2 ∈ A such that a1 = ab1 and a2 = ab2.

(III) Let A be a CBA. Then A has property

(III) if all pairs in A factor.

Trivially (II) ⇒ (III).

But we cannot yet find any CBA such that

pairs factor, but null sequences do not. Ugh.
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Factorization

Let A be an algebra. Then:

A[2] = {ab : a, b ∈ A}, A2 = linA[2].

Definition The algebra A factors if A = A[2]

and A factors weakly if A = A2.

(IV) Let A be a CBA. Then A has property
(IV) if A factors.

Trivially (III) ⇒ (IV). Reverse implication?

Look at H∞(D). It was shown by Ouzomgi
(another nephew of Tom Ransford) that there
is a maximal ideal Mx in H∞(D) that factors,
but such that pairs do not factor.

We would like a separable BFA and/or a CRBA
that factors, but such that null sequences do
not. Not known to us yet.
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Weak factorization

(V) Let A be a CBA. Then A has property (V)
if A factors weakly.

Trivially (IV) ⇒ (V).

For a natural BFA on a compact X, this means
that there are no non-zero point derivations at
any point of X.

George Willis (PLMS 1992) gave a separable
BFA such that every element in A is the sum
of two products, and so A factors weakly, but
such that A does not factor.

Theorem (Rick Loy) Let A be a separa-
ble Banach algebra that factors weakly. Then
there exist m ∈ N and M > 0 such that each
a ∈ A, has the form a =

∑m
i=1 bici, where∑m

i=1 ‖bi‖ ‖ci‖ ≤M ‖a‖. 2

In all known examples, we can take m = 1 or
m = 2.
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Weak factorization for uniform algebras

Embarrassing open point: we have no maxi-
mal ideal M in a uniform algebra that factors
weakly, but does not factor. Any ideas?

[It is easy to get M [2] 6= M2, but we also want
M2 = M .]

Proposition Let X be a compact plane set.
Then the following conditions on x ∈ X with
respect to the uniform algebra R(X) are equiv-
alent:

(a) x is a peak point;

(b) Mx has a BAI or CAI;

(c) Mx factors;

(d) Mx factors weakly. 2

So no counter-examples for R(X).
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Projective factorization

Let A be a BA, with projective tensor product
A ⊗̂A. There is a unique bounded linear op-
erator πA : A ⊗̂A → A with πA(a ⊗ b) = ab for
a, b ∈ A, and then πA(A ⊗̂A) is a subalgebra of
A and a Banach algebra with respect to the
quotient norm from (A ⊗̂A, ‖ · ‖π).

Let A be a BA. Then A factors projectively
if the map πA : A ⊗̂A → A is a surjection, so
that each a ∈ A has the form

∑∞
i=1 bici, where

bi, ci ∈ A and
∑∞
i=1 ‖bi‖ ‖ci‖ <∞.

(VI) Let A be a CBA. Then A has property
(VI) if A factors projectively.

Trivially (V) ⇒ (VI).

Easy counter-example to the reverse implica-
tion: A = `1, with pointwise product.

What about a maximal ideal in a uniform al-
gebra? What about a CRBA? Not known to
us yet.
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Examples of projective factorization

Here Q+• = {r ∈ Q : r > 0}, ω is a weight on

R+, and so `1(Q+•, ω) is a CBA with respect

to convolution multiplication.

At least we have the following:

Example Take A = `1(Q+•, ω) for a contin-

uous weight ω on R+ which may be radical.

Then A factors projectively, but pairs do not

factor. Surely A does not factor? 2
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Projective factorization in uniform
algebras

Let A be a natural uniform algebra on com-
pact X, and take x, y ∈ X. Then x ∼ y if
‖εx − εy‖ < 2. This is an equivalence relation on
X, and the equivalence classess are the Glea-
son parts (wrt A).

These parts form a partition of X, and each
part is a completely regular and σ-compact
topological space with respect to the Gel’fand
topology; by a theorem of Garnett, these are
the only topological restrictions on Gleason parts.

Let A be a natural BFA on K. A net (eα) in A
is a pointwise approximate identity (PAI) if

lim
α
eα(x) = 1 (x ∈ K) ;

the PAI (eα) is contractive if supα ‖eα‖ ≤ 1;
we obtain a CPAI.

Proposition (D-Ulger) A maximal ideal Mx in
a uniform algebra has a CPAI iff {x} is a one-
point part. 2
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Projective factorization for R(X)

Proposition Let X be a compact plane set.

Then the following conditions on x ∈ X with

respect to the uniform algebra R(X) are equiv-

alent:

(a) x is a peak point;

(b) {x} is a one-point Gleason part;

(c) Mx has a CPAI;

(d) x is an isolated point with respect to the

Gleason metric;

(e) Mx factors projectively. 2

So no counter-examples for R(X).
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The big disc algebra - 1

Take an irrational number α with 0 < α < 1,

and consider the ‘open half-plane’ Hα consist-

ing of points (m,n) ∈ Z× Z with m+ nα > 0.

Then consider monomials on C2 of the form

ZmWn, where (m,n) ∈ Hα; here Z and W are

the coordinate functionals on C2. We take

A0,α to be the linear span of these monomials

and the constant function 1, and Aα to be the

uniform closure of this algebra, regarded as a

subalgebra of C(T2). Then Aα is a separable

uniform algebra on its character space Φα that

can be identified with the space T2×[0,1], with

the subset T2×{0} identified to a point, called

x0; the corresponding maximal ideal in Aα at

x0 is denoted by Mα. The set {x0} is a one-

point part, but x0 is not a peak point. (See

the book of Lee Stout for all this.)
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The big disc algebra - 2

Proposition The maximal ideal Mα of the big

disc algebra factors projectively.

Proof For this, we use the fact that it fol-

lows from Dirichlet’s theorem on Diophantine

approximation that, for each ε > 0, there exist

p, q ∈ N with

α−
ε

q
<
p

q
< α .

2

Hence (VI) 6⇒ (I) in the class of separable max-

imal ideals in uniform algebras.

We believe that there are null sequences in Mα

that do not factor, but so far have not proved

this.
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Dense factorization

Let A be a CBA. Then A factors densely if

A2 is dense in A.

For a natural BFA on a compact X, this means

that there are no non-zero, continuous point

derivations at any point of X.

(VII) Let A be a CBA. Then A has property

(VII) if A factors densely.

Trivially (VI) ⇒ (VII).

Example Consider R = C∗,0(I), the algebra of

all continuous functions on I that vanish at 0,

taken with the convolution product. Then R

is a CRBA. It is easy to see that it factors

densely, but not projectively. 2
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Dense factorization and uniform algebras

Example Consider the ‘road-runner set’ X, de-

fined by discs D(xn, rn). Then M0 in R(X) fac-

tors iff
∑∞
i=1 ri/xi =∞ (Melnikov), but factors

densely iff
∑∞
i=1 ri/x

2
i =∞ (Hallstrom). Thus

there are maximal ideals in algebras R(X) that

factor densely, but not projectively. 2

Side remark 1: Stu Sidney has an example

of a separable uniform algebra on X and x ∈ X
such that {x} is a one-point part, but Mx does

not factor densely. 2

Side remark 2: There is a (non-separable)

uniform algebra such that Mx factors, but {x}
is not a one-point part. 2
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Extensions of uniform algebras - 1

Let X and Y be compact spaces, and suppose

that Π : Y → X is a continuous surjection.

Then Π∗ : C(X)→ C(Y ) is defined by the for-

mula

Π∗(f) = f ◦ Π (f ∈ C(X)) ,

so that Π∗ is an isometric isomorphism of C(X)

onto a closed subalgebra of C(Y ). A linear

contraction T : C(Y )→ C(X) such that

T ◦Π∗ = IC(X) is an averaging operator for Π.

20



Extensions of uniform algebras - 2

Let X be a compact space, take x0 ∈ X, and

let A be a uniform algebra on X. Also sup-

pose that (Y, y0, B) is another uniform algebra.

Then (Y, y0, B) is an extension of (X,x0, A)

with respect to a continuous surjection

Π : Y → X and an averaging operator

T : C(Y )→ C(X) for Π if :

(i) Π∗(A) ⊂ B ;

(ii) Π−1({x0}) = {y0} ;

(iii) T (B) = A ;

(iv) (Th)(x0) = h(y0) (h ∈ C(Y )) ;

(v) |(Th)(x)| ≤ |h|Π−1({x}) (x ∈ X, h ∈ C(Y )) .
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Extensions of uniform algebras - 3

Basic idea - this goes back to Brian Cole in
his thesis; it is in the book of Lee Stout.

Start with a suitable (X,x0, A), with A 6= C(X);
take an extension; keep on doing it with suit-
able compatibility conditions built in; index the
set of extensions by the ordinals - usually up
to ω1; act sensibly at limit ordinals. We ob-
tain an enormous, non-separable uniform alge-
bra (Y, y0, B), and, with care, B 6= C(Y ).

Cole’s original construction made extensions
by ‘adding square roots’ to obtain a uniform
algebra (Y, y0, B) with B 6= C(Y ) such that ev-
ery element in My0 is the square of another el-
ement in My0, and so the end point is a ‘Cole
algebra’. (There are also separable examples
of Cole algebras.)

Examples of Joel Feinstein show that the final
uniform algebra can have a variety of other
interesting properties.
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Extensions of uniform algebras - 4

Main example This is how we construct a

maximal ideal Mx in a uniform algebra such

that null sequences in M factor, but x is not

a SBP, and so Mx does not have a BAI. The

main technicality is to find an extension (Y, y0, B)

of a given uniform algebra (X,x0, A) such that

a given null sequence (fn) in Mx0 factors in

My0.

We construct a compact subspace Y of the

space X × CN × C that satisfies certain condi-

tions, namely a point (x, (zn), w) is such that:

(i) znw = fn(x) (n ∈ N);

(ii) |w| = kx := max{|fn(x)|1/2 : n ∈ N};

(iii) |zn|2 ≤ |fn(x)| (n ∈ N).
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Extensions of uniform algebras - 5

The continuous projection is

Π : (x, (zn), w) 7→ x, Y → X.

Also we have pn : (x, (zn), w) 7→ zn, Y → C, and

q : (x, (zn), w) 7→ w, Y → C.

When kx = 0, the ‘fibre’ above x is a singleton,

otherwise it is a lot of circles.

Then take B to be smallest closed subalgebra

of (C(Y ), | · |Y ) containing Π∗(A) and all of the

functions pn and q.

The map T : C(Y )→ C(X) is given by

(Th)(x) =
1

2π

∫ 2π

0
h
(
x, (fn(x)/kx) e−iθ, kxeiθ

)
dθ

for h ∈ C(Y ). 2
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Extensions of uniform algebras - 6

Our conclusion after some more technicalities

is the following:

Theorem There are a natural uniform algebra

A on a compact space X and a point x ∈ X

such that all null sequences in Mx factor, but

Mx does not have a BAI, equivalently, x is not

a SBP for A, and, further, such that each el-

ement in Mx is the square of another element

in Mx and {y} is a one-point part with respect

to A for each y ∈ X. 2

Again note that our example is not separable.
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Esterle’s classification of CRBAs

The 3rd conference on Banach algebras was

held at Calstate, Long Beach, 13-31 July, 1981;

the conference proceedings were published as

Lecture Notes in Mathematics, 975. The most

impressive paper in these proceedings is Jean

Esterle’s ‘Classification of CRBAs’; see my

book, §4.9.

Esterle’s classification has nine classes, each

smaller than the one before. In each case,

a class is distinct from its predecessor, save

that maybe his Classes III and IV coincide, and

maybe his Classes V and VI coincide.

Class V is defined to consist of the CRBAs R

such that there is a 6= 0 in R with a ∈ a2R; with

CH, this condition is equivalent to ‘for each in-

finite compact space K there is a discontinuous

homomorphism from C(K) into R].’
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Two classes

Let A be a CBA, and consider the following
two properties:

(A) lim←− a
n ·A 6= {0} for some a ∈ A;

(B) lim←− a1 · · · an ·A 6= {0} for some (an) in A.

These two conditions specify classes III and IV,
respectively, of Esterle in the case of CRBAs.
In the case of integral domains A, we have:

(A) there exists an element a ∈ A• that can be
factored successively as a = ba1, a1 = ba2,
a2 = ba3, . . . for some b and (an) in A;

(B) there exists an element a ∈ A• that can
be factored successively as a = b1a1, a1 =
b2a2, a2 = b3a3, . . . for some sequences
(an) and (bn) in A.

Clearly (A) ⇒ (B) and our (IV) ⇒(B).
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Another uniform algebra - 1

We cannot distinguish (A) and (B) for CRBAs,
but we can do this for uniform algebras.

Let Π be the open half-plane

Π = {z = x+ iy ∈ C : x > 0},
and let A = Ab(Π), the (non-separable) uni-
form algebra of all bounded, continuous func-
tions on Π that are analytic on Π.

For

f =
∑
{αrδr : r ∈ R+} ∈ `1(R+) ,

denote its Laplace transform by Lf , so that

(Lf)(z) =
∑
{αre−zr : r ∈ R+} (z ∈ Π).

Denote by M and B, respectively, the closures
in (A, | · |Π) of {Lf : f ∈ `1(Q+•)} and
{Lf : f ∈ `1(Q+)}.

Thus B is a separable, unital, closed subalgebra
of A, and hence a uniform algebra on Π, and
M is a maximal ideal in B.
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Another uniform algebra - 2

Lemma 1 The maximal ideal M factors pro-

jectively. 2

Let I consist of the functions F ∈ B such that

|F (z)| = O(e−ax) as z →∞ in Π for some a > 0.

Lemma 2 Suppose that F ∈ I. Then

∞⋂
n=1

FnB = {0}.
2

Proposition Let F ∈M \ I. Then there exists

z ∈ Π such that F (z) = 0.

Proof This is an extension of a classical theo-

rem of H. Bohr using Nevanlinna’s theorem. 2
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Another uniform algebra - 3

Theorem The maximal ideal M of the sepa-

rable, unital uniform algebra B factors projec-

tively, and so satisfies (B), but M does not

satisfy (A), and hence null sequences do not

factor in M .

Proof To show that M does not satisfy (A),

it suffices to show that
⋂
FnM = {0} for each

F ∈M . If F ∈ I, this follows from Lemma 2. If

F ∈M \I, by the proposition there exists z ∈ Π

such that F (z) = 0, and so each G ∈
⋂
FnM

is analytic on a neighbourhood of z and has a

zero of infinite order at z, and so G = 0, giving

the result in this case. 2
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Transfer to the disc - 1

We can transfer the above algebras B and M

from the half-plane Π to the unit disc D. In-

deed, take r ∈ R+•, and define

fr(z) = exp
(
r

(
z + 1

z − 1

))
(z ∈ D \ {1}) .

The functions fr belong to H∞(D). So B is

the unital subalgebra of H∞(D) generated by

the functions fr for r ∈ Q+.

Restrict H∞(D) to the fibre above 1, and call

the character space of the restriction algebra

M1, as in Hoffman. The common zero set of

the functions fr is called Z; it is non-empty, the

union of Gleason parts for H∞(D), and disjoint

from the Shilov boundary.

Consider the compact space K formed by iden-

tifying the points of M1 that are not separated

by B.
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Transfer to the disc - 2

Theorem The algebra B is a natural, separa-

ble uniform algebra on K, and the point corre-

sponding to Z gives the maximal ideal M , and

so is a one-point part off the Shilov boundary.

Thus M does not have a BAI, but it does fac-

tor projectively. 2

Does it factor? Does it factor weakly? Do

pairs factor?
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