Factorization in commutative Banach algebras

H. G. Dales, Lancaster, UK

Complex Analysis and Spectral Theory

A conference in celebration of Thomas Ransford's 60th birthday

22 May 2018

Joint work with Joel Feinstein, Nottingham University, UK, and Hung Le Pham, Victoria University, Wellington, New Zealand

A submitted paper is available

Commutative Banach algebras

Throughout, we shall be concerned with **commutative** Banach algebras = CBAs (always associative and over \mathbb{C}).

In particular, we shall think about:

- semi-simple CBAs, equivalently (natural)
 Banach function algebras (= BFAs) on a locally compact space;
- ullet maximal ideals in (unital) uniform algebras they are closed, unital subalgebras of $(C(X), |\cdot|_X)$, X compact, that separate the points of X;
- commutative, radical Banach algebras = CRBAs.

We are interested to know if the results are different if we restrict to separable examples.

We shall list a number of properties related to factorization; each implies the next; we are trying to give counter-examples to all reverse implications (in various classes of CBAs).

Some notation

Let A be a BFA on a locally compact space X, and take $x \in X$. Then ε_x is the evaluation functional $\varepsilon_x : f \mapsto f(x)$ and M_x is the corresponding maximal modular ideal; A is **natural** if all characters are evaluation functionals.

Let A be a BFA on X. Then $x \in X$ is a **strong boundary point** = SBP if, for each open neighbourhood U of x, there exists $f \in A$ with $f(x) = |f|_X = 1$ and $|f|_{X \setminus U} < 1$ (includes **peak points**).

For a compact plane set X, take R(X) to be the uniform closure of the algebra of rational functions restricted to X; it is a natural uniform algebra on X.

Approximate identities

Let A be a CBA. Then an **approximate identity** (AI) for A is a net (e_{ν}) in A such that $\lim_{\nu} e_{\nu} a = a$ for each $a \in A$; the AI (e_{ν}) is a **bounded approximate identity** (BAI) if $\sup_{\nu} \|e_{\nu}\| < \infty$, and a **contractive approximate identity** (CAI) if $\|e_{\nu}\| \le 1$ for each ν .

(I) Let A be a CBA. Then A has property (I) if A has a BAI.

Approximate identities for uniform algebras

We can characterize when some maximal ideals have a BAI.

Proposition Let A be a natural uniform algebra on a compact space X, and take $x \in X$. Then the following conditions on x are equivalent:

- (a) x is a strong boundary point;
- (b) M_x has a BAI;
- (c) M_x has a CAI.

A natural uniform algebra on compact X is a **Cole algebra** if all points of X are SBPs. Such algebras not equal to C(X) exist.

Null sequences

Let E be a Banach space. Then a **null sequence** in E is a sequence (x_n) in E such that $\lim_{n\to\infty} ||x_n|| = 0$; the space of null sequences in E is $c_0(E)$, and $c_0(E)$ is itself a Banach space for the norm defined by

$$||(x_n)|| = \sup\{||x_n|| : (x_n) \in c_0(E)\}.$$

Let A be a CBA. Then **null sequences factor** in A if, for each null sequence (a_n) in A, there exist $a \in A$ and a null sequence (b_n) in A such that $a_n = ab_n \ (n \in \mathbb{N})$.

[Important in automatic continuity theory - see my book.]

(II) Let A be a CBA. Then A has property (II) if all null sequences in A factor.

Cohen's factorization theorem

The following result is one form of the famous **Cohen's factorization theorem**; (much) more general forms are given in my book.

Theorem Let A be a CBA with a bounded approximate identity. Then null sequences factor, and so $(I) \Rightarrow (II)$ for A.

Reverse implication? **George Willis** (PLMS 1992) gave a separable BFA satisfying (II), but not (I), and this example can be modified to also give a separable CRBA with the same property.

New Theorem There is a maximal ideal in a uniform algebra satisfying (II), but not (I).

But our example is not separable - an open point. Proof later.

Factorization of pairs

Let A be a commutative algebra. Then **pairs** factor in A if, for each $a_1, a_2 \in A$, there exist $a, b_1, b_2 \in A$ such that $a_1 = ab_1$ and $a_2 = ab_2$.

(III) Let A be a CBA. Then A has property (III) if all pairs in A factor.

Trivially (II) \Rightarrow (III).

But we cannot yet find any CBA such that pairs factor, but null sequences do not. Ugh.

Factorization

Let A be an algebra. Then:

$$A^{[2]} = \{ab : a, b \in A\}, \quad A^2 = \lim A^{[2]}.$$

Definition The algebra A factors if $A = A^{[2]}$ and A factors weakly if $A = A^2$.

(IV) Let A be a CBA. Then A has property (IV) if A factors.

Trivially (III) \Rightarrow (IV). Reverse implication?

Look at $H^{\infty}(\mathbb{D})$. It was shown by Ouzomgi (another nephew of Tom Ransford) that there is a maximal ideal M_x in $H^{\infty}(\mathbb{D})$ that factors, but such that pairs do not factor.

We would like a separable BFA and/or a CRBA that factors, but such that null sequences do not. Not known to us yet.

Weak factorization

(V) Let A be a CBA. Then A has property (V) if A factors weakly.

Trivially (IV) \Rightarrow (V).

For a natural BFA on a compact X, this means that there are no non-zero point derivations at any point of X.

George Willis (PLMS 1992) gave a separable BFA such that every element in A is the sum of two products, and so A factors weakly, but such that A does not factor.

Theorem (**Rick Loy**) Let A be a **separable** Banach algebra that factors weakly. Then there exist $m \in \mathbb{N}$ and M > 0 such that each $a \in A$, has the form $a = \sum_{i=1}^m b_i c_i$, where $\sum_{i=1}^m \|b_i\| \|c_i\| \le M \|a\|$.

In all known examples, we can take m=1 or m=2.

Weak factorization for uniform algebras

Embarrassing open point: we have no maximal ideal M in a uniform algebra that factors weakly, but does not factor. Any ideas?

[It is easy to get $M^{[2]} \neq M^2$, but we also want $M^2 = M$.]

Proposition Let X be a compact plane set. Then the following conditions on $x \in X$ with respect to the uniform algebra R(X) are equivalent:

- (a) x is a peak point;
- (b) M_x has a BAI or CAI;
- (c) M_x factors;
- (d) M_x factors weakly.

So no counter-examples for R(X).

Projective factorization

Let A be a BA, with projective tensor product $A \widehat{\otimes} A$. There is a unique bounded linear operator $\pi_A : A \widehat{\otimes} A \to A$ with $\pi_A(a \otimes b) = ab$ for $a, b \in A$, and then $\pi_A(A \widehat{\otimes} A)$ is a subalgebra of A and a Banach algebra with respect to the quotient norm from $(A \widehat{\otimes} A, \|\cdot\|_{\pi})$.

Let A be a BA. Then A factors projectively if the map $\pi_A:A\widehat{\otimes} A\to A$ is a surjection, so that each $a\in A$ has the form $\sum_{i=1}^{\infty}b_ic_i$, where $b_i,c_i\in A$ and $\sum_{i=1}^{\infty}\|b_i\|\|c_i\|<\infty$.

(VI) Let A be a CBA. Then A has property (VI) if A factors projectively.

Trivially $(V) \Rightarrow (VI)$.

Easy counter-example to the reverse implication: $A = \ell^1$, with pointwise product.

What about a maximal ideal in a uniform algebra? What about a CRBA? Not known to us yet.

Examples of projective factorization

Here $\mathbb{Q}^{+\bullet} = \{r \in \mathbb{Q} : r > 0\}$, ω is a weight on \mathbb{R}^+ , and so $\ell^1(\mathbb{Q}^{+\bullet}, \omega)$ is a CBA with respect to convolution multiplication.

At least we have the following:

Example Take $A = \ell^1(\mathbb{Q}^{+\bullet}, \omega)$ for a continuous weight ω on \mathbb{R}^+ which may be radical. Then A factors projectively, but pairs do not factor. Surely A does not factor?

Projective factorization in uniform algebras

Let A be a natural uniform algebra on compact X, and take $x,y \in X$. Then $x \sim y$ if $\|\varepsilon_x - \varepsilon_y\| < 2$. This is an equivalence relation on X, and the equivalence classess are the **Gleason parts** (wrt A).

These parts form a partition of X, and each part is a completely regular and σ -compact topological space with respect to the Gel'fand topology; by a theorem of **Garnett**, these are the only topological restrictions on Gleason parts.

Let A be a natural BFA on K. A net (e_{α}) in A is a **pointwise approximate identity** (PAI) if

$$\lim_{\alpha} e_{\alpha}(x) = 1 \quad (x \in K);$$

the PAI (e_{α}) is **contractive** if $\sup_{\alpha} ||e_{\alpha}|| \leq 1$; we obtain a CPAI.

Proposition (**D-Ulger**) A maximal ideal M_x in a uniform algebra has a CPAI iff $\{x\}$ is a one-point part.

Projective factorization for R(X)

Proposition Let X be a compact plane set. Then the following conditions on $x \in X$ with respect to the uniform algebra R(X) are equivalent:

- (a) x is a peak point;
- (b) $\{x\}$ is a one-point Gleason part;
- (c) M_x has a CPAI;
- (d) x is an isolated point with respect to the Gleason metric;
- (e) M_x factors projectively.

So no counter-examples for R(X).

The big disc algebra - 1

Take an irrational number α with $0 < \alpha < 1$, and consider the 'open half-plane' H_{α} consisting of points $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ with $m + n\alpha > 0$.

Then consider monomials on \mathbb{C}^2 of the form Z^mW^n , where $(m,n)\in H_\alpha$; here Z and W are the coordinate functionals on \mathbb{C}^2 . We take $\mathfrak{A}_{0,\alpha}$ to be the linear span of these monomials and the constant function 1, and \mathfrak{A}_α to be the uniform closure of this algebra, regarded as a subalgebra of $C(\mathbb{T}^2)$. Then \mathfrak{A}_α is a separable uniform algebra on its character space Φ_α that can be identified with the space $\mathbb{T}^2\times [0,1]$, with the subset $\mathbb{T}^2\times \{0\}$ identified to a point, called x_0 ; the corresponding maximal ideal in \mathfrak{A}_α at x_0 is denoted by \mathfrak{M}_α . The set $\{x_0\}$ is a one-point part, but x_0 is not a peak point. (See the book of **Lee Stout** for all this.)

The big disc algebra - 2

Proposition The maximal ideal \mathfrak{M}_{α} of the big disc algebra factors projectively.

Proof For this, we use the fact that it follows from Dirichlet's theorem on Diophantine approximation that, for each $\varepsilon > 0$, there exist $p,q \in \mathbb{N}$ with

$$\alpha - \frac{\varepsilon}{q} < \frac{p}{q} < \alpha .$$

Hence $(VI) \Rightarrow (I)$ in the class of separable maximal ideals in uniform algebras.

We believe that there are null sequences in \mathfrak{M}_{α} that do not factor, but so far have not proved this.

Dense factorization

Let A be a CBA. Then A factors densely if A^2 is dense in A.

For a natural BFA on a compact X, this means that there are no non-zero, continuous point derivations at any point of X.

(VII) Let A be a CBA. Then A has property (VII) if A factors densely.

Trivially $(VI) \Rightarrow (VII)$.

Example Consider $R = C_{*,0}(\mathbb{I})$, the algebra of all continuous functions on \mathbb{I} that vanish at 0, taken with the convolution product. Then R is a CRBA. It is easy to see that it factors densely, but not projectively.

Dense factorization and uniform algebras

Example Consider the 'road-runner set' X, defined by discs $\mathbb{D}(x_n, r_n)$. Then M_0 in R(X) factors iff $\sum_{i=1}^{\infty} r_i/x_i = \infty$ (**Melnikov**), but factors densely iff $\sum_{i=1}^{\infty} r_i/x_i^2 = \infty$ (**Hallstrom**). Thus there are maximal ideals in algebras R(X) that factor densely, but not projectively.

Side remark 1: Stu Sidney has an example of a separable uniform algebra on X and $x \in X$ such that $\{x\}$ is a one-point part, but M_x does not factor densely.

Side remark 2: There is a (non-separable) uniform algebra such that M_x factors, but $\{x\}$ is not a one-point part.

Let X and Y be compact spaces, and suppose that $\Pi: Y \to X$ is a continuous surjection. Then $\Pi^*: C(X) \to C(Y)$ is defined by the formula

$$\Pi^*(f) = f \circ \Pi \quad (f \in C(X)),$$

so that Π^* is an isometric isomorphism of C(X) onto a closed subalgebra of C(Y). A linear contraction $T:C(Y)\to C(X)$ such that $T\circ\Pi^*=I_{C(X)}$ is an **averaging operator** for Π .

Let X be a compact space, take $x_0 \in X$, and let A be a uniform algebra on X. Also suppose that (Y, y_0, B) is another uniform algebra. Then (Y, y_0, B) is an **extension** of (X, x_0, A) with respect to a continuous surjection

 $\Pi: Y \to X$ and an averaging operator

 $T:C(Y)\to C(X)$ for Π if :

(i)
$$\Pi^*(A) \subset B$$
;

(ii)
$$\Pi^{-1}(\{x_0\}) = \{y_0\}$$
;

(iii)
$$T(B) = A$$
;

(iv)
$$(Th)(x_0) = h(y_0)$$
 $(h \in C(Y))$;

(v)
$$|(Th)(x)| \le |h|_{\Pi^{-1}(\{x\})}$$
 $(x \in X, h \in C(Y))$.

Basic idea - this goes back to Brian Cole in his thesis; it is in the book of Lee Stout.

Start with a suitable (X, x_0, A) , with $A \neq C(X)$; take an extension; keep on doing it with suitable compatibility conditions built in; index the set of extensions by the ordinals - usually up to ω_1 ; act sensibly at limit ordinals. We obtain an enormous, non-separable uniform algebra (Y, y_0, B) , and, with care, $B \neq C(Y)$.

Cole's original construction made extensions by 'adding square roots' to obtain a uniform algebra (Y, y_0, B) with $B \neq C(Y)$ such that every element in M_{y_0} is the square of another element in M_{y_0} , and so the end point is a 'Cole algebra'. (There are also separable examples of Cole algebras.)

Examples of **Joel Feinstein** show that the final uniform algebra can have a variety of other interesting properties.

Main example This is how we construct a maximal ideal M_x in a uniform algebra such that null sequences in M factor, but x is not a SBP, and so M_x does not have a BAI. The main technicality is to find an extension (Y, y_0, B) of a given uniform algebra (X, x_0, A) such that a given null sequence (f_n) in M_{x_0} factors in M_{y_0} .

We construct a compact subspace Y of the space $X \times \mathbb{C}^{\mathbb{N}} \times \mathbb{C}$ that satisfies certain conditions, namely a point $(x,(z_n),w)$ is such that:

(i)
$$z_n w = f_n(x) \ (n \in \mathbb{N});$$

(ii)
$$|w| = k_x := \max\{|f_n(x)|^{1/2} : n \in \mathbb{N}\};$$

(iii)
$$|z_n|^2 \le |f_n(x)| \quad (n \in \mathbb{N}).$$

The continuous projection is

$$\Pi: (x,(z_n),w) \mapsto x, \quad Y \to X.$$

Also we have $p_n: (x,(z_n),w) \mapsto z_n, Y \to \mathbb{C}$, and $q: (x,(z_n),w) \mapsto w, Y \to \mathbb{C}$.

When $k_x = 0$, the 'fibre' above x is a singleton, otherwise it is a lot of circles.

Then take B to be smallest closed subalgebra of $(C(Y), |\cdot|_Y)$ containing $\Pi^*(A)$ and all of the functions p_n and q.

The map $T:C(Y)\to C(X)$ is given by

$$(Th)(x) = \frac{1}{2\pi} \int_0^{2\pi} h\left(x, (f_n(x)/k_x) e^{-i\theta}, k_x e^{i\theta}\right) d\theta$$

for $h \in C(Y)$.

Our conclusion after some more technicalities is the following:

Theorem There are a natural uniform algebra A on a compact space X and a point $x \in X$ such that all null sequences in M_x factor, but M_x does not have a BAI, equivalently, x is not a SBP for A, and, further, such that each element in M_x is the square of another element in M_x and $\{y\}$ is a one-point part with respect to A for each $y \in X$.

Again note that our example is not separable.

Esterle's classification of CRBAs

The 3rd conference on Banach algebras was held at Calstate, Long Beach, 13-31 July, 1981; the conference proceedings were published as *Lecture Notes in Mathematics*, 975. The most impressive paper in these proceedings is **Jean Esterle**'s 'Classification of CRBAs'; see my book, §4.9.

Esterle's classification has nine classes, each smaller than the one before. In each case, a class is distinct from its predecessor, save that maybe his Classes III and IV coincide, and maybe his Classes V and VI coincide.

Class V is defined to consist of the CRBAs R such that there is $a \neq 0$ in R with $a \in \overline{a^2R}$; with CH, this condition is equivalent to 'for each infinite compact space K there is a discontinuous homomorphism from C(K) into R^{\sharp} .'

Two classes

Let A be a CBA, and consider the following two properties:

- (A) $\varprojlim a^n \cdot A \neq \{0\}$ for some $a \in A$;
- (B) $\varprojlim a_1 \cdots a_n \cdot A \neq \{0\}$ for some (a_n) in A.

These two conditions specify classes III and IV, respectively, of Esterle in the case of CRBAs. In the case of integral domains A, we have:

- (A) there exists an element $a \in A^{\bullet}$ that can be factored successively as $a = ba_1$, $a_1 = ba_2$, $a_2 = ba_3$, ... for some b and (a_n) in A;
- (B) there exists an element $a \in A^{\bullet}$ that can be factored successively as $a = b_1 a_1$, $a_1 = b_2 a_2$, $a_2 = b_3 a_3$, ... for some sequences (a_n) and (b_n) in A.

Clearly (A) \Rightarrow (B) and our (IV) \Rightarrow (B).

Another uniform algebra - 1

We cannot distinguish (A) and (B) for CRBAs, but we can do this for uniform algebras.

Let Π be the open half-plane

$$\Pi = \{ z = x + iy \in \mathbb{C} : x > 0 \},$$

and let $A = A^b(\overline{\Pi})$, the (non-separable) uniform algebra of all bounded, continuous functions on $\overline{\Pi}$ that are analytic on Π .

For

$$f = \sum \{\alpha_r \delta_r : r \in \mathbb{R}^+\} \in \ell^1(\mathbb{R}^+),$$

denote its Laplace transform by $\mathcal{L}f$, so that

$$(\mathcal{L}f)(z) = \sum \{\alpha_r e^{-zr} : r \in \mathbb{R}^+\} \quad (z \in \overline{\Pi}).$$

Denote by M and B, respectively, the closures in $(A, |\cdot|_{\overline{\Pi}})$ of $\{\mathcal{L}f : f \in \ell^1(\mathbb{Q}^{+\bullet})\}$ and $\{\mathcal{L}f : f \in \ell^1(\mathbb{Q}^+)\}.$

Thus B is a separable, unital, closed subalgebra of A, and hence a uniform algebra on $\overline{\Pi}$, and M is a maximal ideal in B.

Another uniform algebra - 2

Lemma 1 The maximal ideal M factors projectively. \Box

Let I consist of the functions $F \in B$ such that $|F(z)| = O(e^{-ax})$ as $z \to \infty$ in $\overline{\Pi}$ for some a > 0.

Lemma 2 Suppose that $F \in I$. Then

$$\bigcap_{n=1}^{\infty} F^n B = \{0\}.$$

Proposition Let $F \in M \setminus I$. Then there exists $z \in \Pi$ such that F(z) = 0.

Proof This is an extension of a classical theorem of H. Bohr using Nevanlinna's theorem.

Another uniform algebra - 3

Theorem The maximal ideal M of the separable, unital uniform algebra B factors projectively, and so satisfies (B), but M does not satisfy (A), and hence null sequences do not factor in M.

Proof To show that M does not satisfy (A), it suffices to show that $\bigcap F^nM = \{0\}$ for each $F \in M$. If $F \in I$, this follows from Lemma 2. If $F \in M \setminus I$, by the proposition there exists $z \in \Pi$ such that F(z) = 0, and so each $G \in \bigcap F^nM$ is analytic on a neighbourhood of z and has a zero of infinite order at z, and so G = 0, giving the result in this case.

Transfer to the disc - 1

We can transfer the above algebras B and M from the half-plane Π to the unit disc \mathbb{D} . Indeed, take $r \in \mathbb{R}^{+\bullet}$, and define

$$f_r(z) = \exp\left(r\left(\frac{z+1}{z-1}\right)\right) \quad (z \in \overline{\mathbb{D}} \setminus \{1\}).$$

The functions f_r belong to $H^{\infty}(\mathbb{D})$. So B is the unital subalgebra of $H^{\infty}(\mathbb{D})$ generated by the functions f_r for $r \in \mathbb{Q}^+$.

Restrict $H^{\infty}(\mathbb{D})$ to the fibre above 1, and call the character space of the restriction algebra \mathfrak{M}_1 , as in Hoffman. The common zero set of the functions f_r is called Z; it is non-empty, the union of Gleason parts for $H^{\infty}(\mathbb{D})$, and disjoint from the Shilov boundary.

Consider the compact space K formed by identifying the points of \mathfrak{M}_1 that are not separated by B.

Transfer to the disc - 2

Theorem The algebra B is a natural, separable uniform algebra on K, and the point corresponding to Z gives the maximal ideal M, and so is a one-point part off the Shilov boundary. Thus M does not have a BAI, but it does factor projectively.

Does it factor? Does it factor weakly? Do pairs factor?