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Université Laval
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Definitions and basic properties

Spectrum in Banach algebras

• Let A be a (unital, complex) Banach algebra.

• The spectrum of a ∈ A is the set of all λ ∈ C such that
λ1− a is not invertible in A, and will be denoted by σ(a).

• The spectral radius of a ∈ A is the maximum modulus of the
elements of σ(a), and will be denoted by ρ(a).

• The peripheral spectrum of a ∈ A is the intersection of σ(a)
with the circle of center 0 and radius ρ(a) in the complex
plane, and will be denoted by π(a).
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Definitions and basic properties

The spectral radius and the norm
• We have

ρ(a) = lim ||an||1/n ≤ ||a||.

• That ρ(a) = 0 does not imply a = 0. This is why we usually
work with semisimple algebras: a = 0 in such an algebra if
and only if ρ(a + x) = ρ(a) for each x with ρ(x) = 0 (J.
Zemánek).

• We have ρ(λa) = |λ|ρ(a).
• Do we have ρ(a + b) ≤ ρ(a) + ρ(b) for every a, b ∈ A?
• If a and b commute, then

σ(a + b) ⊆ σ(a) + σ(b),

and
ρ(a + b) ≤ ρ(a) + ρ(b).
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Kaplansky’s problem (’70)

• Let A and B be semisimple Banach algebras and φ : A → B
linear, unital and surjective such that

σ(φ(x)) ⊆ σ(x) (∀x ∈ A). (1)

Does-it follow that φ is a Jordan morphism, that is

φ(x2) = φ(x)2 (∀x ∈ A)?

• (Gleason (1967), Kahane–Żelazko (1968)) φ : A → C linear
and φ(x) ∈ σ(x) for each x ∈ A implies that φ is a character
of A.
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• (Gleason (1967), Kahane–Żelazko (1968)) φ : A → C linear
and φ(x) ∈ σ(x) for each x ∈ A implies that φ is a character
of A.

C. Costara On local spectra preserver problems



The spectrum
Spectral preserver problems

The local spectrum
Local spectra preservers

Recent results on local spectra preserver problems

Kaplansky’s problem
Variants of Kaplansky’s problem
Spectral isometries
Results

Kaplansky’s problem (’70)

• Let A and B be semisimple Banach algebras and φ : A → B
linear, unital and surjective such that

σ(φ(x)) ⊆ σ(x) (∀x ∈ A). (1)

Does-it follow that φ is a Jordan morphism, that is

φ(x2) = φ(x)2 (∀x ∈ A)?
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Variants of Kaplansky’s problem

• (Spectrum-preserving maps) Instead of (1), we have that

σ(φ(x)) = σ(x) (∀x ∈ A). (2)

• (Spectrally bounded maps) Instead of (1), we have that
there exists M > 0 such that

ρ(φ(x)) ≤ Mρ(x) (∀x ∈ A). (3)

• (Spectral isometries) Instead of (1), we have that

ρ(φ(x)) = ρ(x) (∀x ∈ A). (4)

• Consider particular cases of Banach algebras.
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Spectral isometries

• Let A and B be semisimple Banach algebras and φ : A → B a
linear, unital and surjective spectral isometry. Then:

• φ is continuous and injective, and therefore a topological
isomorphism;

• φ preserves the peripheral spectrum;

• φ preserves the convex hull of the spectrum;

• We do not know if φ preserves the whole spectrum, or if it
preserves at least the poynomial convex hull of the spectrum.
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The case L(X )

• Theorem (A. A. Jafarian and A. R. Sourour, J. Funct.
Anal., 1986). A = B = L(X ), with X Banach space and
σ(φ(x)) = σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.

• Theorem (M. Bres̆ar and P. S̆emrl, J. Funct. Anal.,
1996). A = B = L(X ), with X Banach space and
ρ(φ(x)) = ρ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.
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The case of algebras having finite-dimensional
representations

• Theorem (B. Aupetit, Pac. J. Math., 1979). B =Mn

and σ(φ(x)) ⊆ σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.

• The same holds for B having a separating family of
finite-dimensional irreducible representations.
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The case of von Neumann algebras

• Theorem (B. Aupetit, J. London Math. Soc., 2000). A
and B are von Neumann algebras and
σ(φ(x)) = σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.

• Idea: The map φ sends projections into idempotents!

• Characterization of idempotents in terms of the spectrum
function!

• For the case of spectral isometries: partial results for
particular cases of C*-algebras.
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Definitions
The spectrum and the local spectrum

The local spectrum at some vector

• For T ∈ L (X ), its local resolvent set at x ∈ X is the union of
all open subsets U ⊆ C for which there exists an analytic
function f : U → X such that (T − λI ) f (λ) = x for all
λ ∈ U. The local spectrum of T at x , denoted by σT (x), is
defined as the complement in C of the local resolvent set of T
at x .

• For each x ∈ X and T ∈ L (X ), we have that σT (x) is a
(possible empty) closed subset of σ (T ), the classical
spectrum of T .
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The local spectrum at some vector

• The local spectral radius of T at x is defined by

rT (x) = lim sup
k→∞

||T k(x)||1/k .

• For T ∈Mn and denote by λ1, ..., λk the distinct eigenvalues
of T and by N1, ...,Nk the corresponding root spaces. We
have Cn = N1 ⊕ · · · ⊕Nk and T = T1 ⊕ · · · ⊕ Tk , where Tj is
the restriction of T to Nj . Let Pj : Cn → Nj ⊆ Cn,
j = 1, ..., k , denote the canonical projections. Then

σT (x) =
⋃

1≤j≤k
{λj : Pj (x) 6= 0}.
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The spectrum and the local spectrum

The single-valued extension property

• An operator T ∈ L (X ) is said to have the SVEP at a point
λ0 ∈ C if for every neighbourhood U of λ0 the only analytic
function h : U → X which satisfies the equation
(T − λI ) h (λ) = 0 on U is the trivial one.

• We say that T has the SVEP if it has the SVEP at every
λ ∈ C.

• If T has the SVEP and x is a nonzero vector in X , then
σT (x) is not empty.

• Any T ∈ L (X ) for which its point spectrum has empty
interior has SVEP.
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The spectrum and the local spectrum

• For any operator T ∈ L (X ), we have that

• σsu (T ) = ∪x∈XσT (x) ;

• ρ (T ) = sup{rT (x) : x ∈ X};
• The set

{x ∈ X : σsu (T ) = σT (x)}

is of the second Baire category in X ;

• The set
{x ∈ X : ρ (T ) = rT (x)}

is of the second Baire category in X .
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A first result
Preservers of local spectrum/spectral radius
An automatic continuity problem
Preservers of local spectral radius zero

Local spectra preserver

• Theorem (A. Bourhim and T. Ransford, Int. Eq. Oper.
Th., 2005) Let ϕ : L (X )→ L (X ) be an additive map such
that

σϕ(T ) (x) = σT (x) (T ∈ L (X ) ; x ∈ X ).

Then ϕ (T ) = T for all T ∈ L (X ).
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Preservers of local spectral radius
• Theorem (J. Bračič and V. Müller, Studia Math. 2009)

Let ϕ : L (X )→ L (X ) be a continuous surjective linear map
and x0 6= 0 in X .
i) If

σϕ(T ) (x0) = σT (x0) (T ∈ L(X )),

there exists an invertible A ∈ L (X ) such that Ax0 = x0 and

ϕ (T ) = ATA−1 (T ∈ L(X )).

ii) If
rϕ(T ) (x0) = rT (x0) (T ∈ L(X )),

there exists an invertible A ∈ L (X ) and an unimodular
complex constant c such that Ax0 = x0 and

ϕ (T ) = cATA−1 (T ∈ L(X )).
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Preservers of local spectrum/spectral radius

• Ideea: the set of all operators T ∈ L(X ) such that the
surjectivity spectrum of T coincides with σT (x0) is dense in
L(X ). As a corollary, we obtain that the set of all T ∈ L(X )
such that rT (x0) = ρ (T ) is also dense. Then using the
continuity hypothesis we have ρ (ϕ (T )) = ρ (T ) for all
T ∈ L(X ). The surjective spectral isometries of L(X ) are of a
standard form!
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Preservers of local spectral radius

• Theorem (–, 2010) Let x0 ∈ X be a fixed non-zero vector,
and let ϕ : L (X )→ L (X ) be a linear surjective map for
which there exists M > 0 such that

rϕ(T ) (x0) ≤ MrT (x0) (T ∈ L(X )).

Then ϕ is automatically continuous.
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Preservers of local spectral radius zero

• (–, 2012) Let ϕ : L (X )→ L (X ) be linear and surjective
such that for every x ∈ X we have

rT (x) = 0 if and only if rϕ(T ) (x) = 0.

There exists then a nonzero complex number c such that
ϕ (T ) = cT for every T ∈ L (X ).
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Preservers of local spectral radius zero

• (–, 2012) Let ϕ : L (X )→ L (X ) be linear and surjective
such that for every x ∈ X we have

rT (x) = 0 if and only if rϕ(T ) (x) = 0.

There exists then a nonzero complex number c such that
ϕ (T ) = cT for every T ∈ L (X ).
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The automatic continuity problem: revisited
Preservers of inner/outer local spectral radius
Maps preserving matrices of local spectral radius zero at some fixed vector
Additive maps preserving matrices of inner local spectral radius zero at some fixed vector

Some new definitions

• For a closed subset F ⊆ C and an operator T ∈ L (X ), we
defined the glocal spectral subspace of T as

χT (F ) = {x ∈ X : (T−λI )f (λ) = x has an analytic sol. on C\F}.

• We have

rT (x) = inf{r ≥ 0 : x ∈ χT

(
D(0; r)

)
}.
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The automatic continuity problem: revisited
Preservers of inner/outer local spectral radius
Maps preserving matrices of local spectral radius zero at some fixed vector
Additive maps preserving matrices of inner local spectral radius zero at some fixed vector

Some new definitions
• Define

iT (x) = sup{r ≥ 0 : x ∈ χT (C\D(0; r))}.

• Define
ΓT (x) = max{|λ| : λ ∈ σT (x)}

and
γT (x) = min{|λ| : λ ∈ σT (x)},

with the convention that ΓT (x) = −∞ and γT (x) = +∞
precisely when σT (x) is empty.

• We have
iT (x) ≤ γT (x) ≤ ΓT (x) ≤ rT (x)

when σT (x) is not empty.
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The automatic continuity problem: revisited
Preservers of inner/outer local spectral radius
Maps preserving matrices of local spectral radius zero at some fixed vector
Additive maps preserving matrices of inner local spectral radius zero at some fixed vector

Automatic continuity

• Theorem (–, 2017). Fix a nonzero vector x0 ∈ X and let
ϕ : L (X )→ L (X ) be a linear surjective map such that

Γϕ(T ) (x0) ≤ ρ (T ) (T ∈ L (X )).

Then ϕ is continuous.

• Corollary. Let ϕ : L (X )→ L (X ) be a linear surjective map
such that

σϕ(T ) (x0) ⊆ σT (x0) (T ∈ L(X )).

Then ϕ is continuous.
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Then ϕ is continuous.
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Preservers of inner/outer local spectral radius
• Theorem (–, 2018). Let ϕ : L (X )→ L (X ) be a linear

surjective map such that

σϕ(T ) (x) ∩ σT (x) 6= ∅
for each T ∈ L(X ) and x ∈ X such that at least one of the
above sets is nonempty. Then ϕ is the identity of L(X ).

• Theorem (–, 2018). Suppose ϕ : L (X )→ L (X ) is a linear
and surjective map such that

γϕ(T ) (x) ≤ ΓT (x)

and
γT (x) ≤ Γϕ(T ) (x)

for each T ∈ L(X ) and x ∈ X such that at least one of the
sets σϕ(T ) (x) and σT (x) is nonempty. There exists then a
unimodular c such that ϕ (T ) = cT for every T ∈ L(X ).
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• Theorem (–, 2018). Let ϕ : L (X )→ L (X ) be a linear
surjective map such that for each T ∈ L(X ) and x ∈ X such
that at least one of the sets σϕ(T ) (x) and σT (x) is
nonempty, there exist α ∈ σϕ(T ) (x) and β ∈ σT (x) such that
|α| = |β|. There exists then a unimodular constant c such
that ϕ (T ) = cT for every T .
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The automatic continuity problem: revisited
Preservers of inner/outer local spectral radius
Maps preserving matrices of local spectral radius zero at some fixed vector
Additive maps preserving matrices of inner local spectral radius zero at some fixed vector

Preservers on matrices

• Theorem (M. González and M. Mbekhta, Linear Algebra
Appl., 2007). Fix a nonzero vector x0 ∈ Cn and let
ϕ :Mn →Mn be a linear map such that

σϕ(T ) (x0) = σT (x0) (T ∈Mn).

There exists then an invertible matrix A ∈Mn such that
Ax0 = x0 and

ϕ (T ) = ATA−1 (T ∈Mn).
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The automatic continuity problem: revisited
Preservers of inner/outer local spectral radius
Maps preserving matrices of local spectral radius zero at some fixed vector
Additive maps preserving matrices of inner local spectral radius zero at some fixed vector

Local spectra preservers on matrices

• Theorem (A. Bourhim and V.G. Miller, Studia Math.,
2008). Fix a nonzero vector x0 ∈ Cn and let ϕ :Mn →Mn

be a linear map such that

rϕ(T ) (x0) = rT (x0) (T ∈Mn).

There exist then a unimodular complex constant c and an
invertible matrix A ∈Mn such that Ax0 = x0 and

ϕ (T ) = cATA−1 (T ∈Mn).
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Maps preserving matrices of local spectral radius zero at
some fixed vector

• Theorem (A. Bourhim and –, 2018). For a nonzero fixed
vector x0 ∈ C2, a linear map ϕ on M2 satisfies

rT (x0) = 0⇐⇒ rϕ(T ) (x0) = 0 (T ∈M2)

if and only if there exists a nonzero scalar α, an invertible
matrix U ∈M2 for which Ux0 = x0 and a matrix Q ∈M2

satisfying Qx0 = 0 and tr(Q) 6= −1 such that

ϕ (T ) = α
(
UTU−1 + tr(T ) · Q

)
for all T ∈M2.
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• Theorem (A. Bourhim and –, 2018). Let n ≥ 3 be a
natural number, and fix a nonzero vector x0 ∈ Cn. A linear
map ϕ :Mn →Mn satisfies

rT (x0) = 0⇐⇒ rϕ(T ) (x0) = 0 (T ∈Mn)

if and only if there exists a nonzero scalar α and an invertible
matrix U ∈Mn such that Ux0 = x0 and

ϕ (T ) = αUTU−1

for all T ∈Mn.
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The automatic continuity problem: revisited
Preservers of inner/outer local spectral radius
Maps preserving matrices of local spectral radius zero at some fixed vector
Additive maps preserving matrices of inner local spectral radius zero at some fixed vector

Maps preserving matrices of inner local spectral radius zero
at some fixed vector

• Theorem (–, 2018). Let n ≥ 2 be a natural number. Let
x0 ∈ Cn be a fixed nonzero vector and let ϕ :Mn →Mn be a
surjective additive map. Then

iT (x0) = 0 =⇒ iϕ(T ) (x0) = 0 (T ∈Mn) (5)

if and only if there exist a nonzero c , a field automorphism
η : C→ C, an invertible matrix A ∈Mn satisfying
A(xη0 ) = x0 and a vector f ∈ Cn satisfying f tx0 6= 1 such that

ϕ (T ) = cA(T − x0f
tT )ηA−1 (T ∈Mn). (6)

We arrive at the same conclusion by supposing

iϕ(T ) (x0) = 0⇒ iT (x0) = 0 (T ∈Mn) (7)

instead of (5).
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