On local spectra preserver problems

Constantin COSTARA

OVIDIUS University of Constanța, Romania

May 2018 - Québec Université Laval

On local spectra preserver problems The spectrum

Definitions and basic properties

2 Spectral preserver problems

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries

Results

3 The local spectrum

Definitions

The spectrum and the local spectrum

4 Local spectra preservers

A first result

Preservers of local spectrum/spectral radius

An automatic continuity problem

Preservers of local spectral radius zero

Definitions and basic properties

Spectrum in Banach algebras

• Let \mathcal{A} be a (unital, complex) Banach algebra.

A 10

Definitions and basic properties

- Let \mathcal{A} be a (unital, complex) Banach algebra.
- The spectrum of a ∈ A is the set of all λ ∈ C such that λ1 a is not invertible in A, and will be denoted by σ(a).

- Let \mathcal{A} be a (unital, complex) Banach algebra.
- The spectrum of a ∈ A is the set of all λ ∈ C such that λ1 a is not invertible in A, and will be denoted by σ(a).
- The spectral radius of a ∈ A is the maximum modulus of the elements of σ(a), and will be denoted by ρ(a).

- Let \mathcal{A} be a (unital, complex) Banach algebra.
- The spectrum of a ∈ A is the set of all λ ∈ C such that λ1 a is not invertible in A, and will be denoted by σ(a).
- The spectral radius of a ∈ A is the maximum modulus of the elements of σ(a), and will be denoted by ρ(a).
- The peripheral spectrum of $a \in A$ is the intersection of $\sigma(a)$ with the circle of center 0 and radius $\rho(a)$ in the complex plane, and will be denoted by $\pi(a)$.

- Let \mathcal{A} be a (unital, complex) Banach algebra.
- The spectrum of a ∈ A is the set of all λ ∈ C such that λ1 a is not invertible in A, and will be denoted by σ(a).
- The spectral radius of a ∈ A is the maximum modulus of the elements of σ(a), and will be denoted by ρ(a).
- The peripheral spectrum of $a \in A$ is the intersection of $\sigma(a)$ with the circle of center 0 and radius $\rho(a)$ in the complex plane, and will be denoted by $\pi(a)$.

Definitions and basic properties

The spectral radius and the norm

• We have

$$\rho(a) = \lim ||a^n||^{1/n} \le ||a||.$$

▲ 同 ▶ ▲ 目

The spectral radius and the norm

We have

$$\rho(a) = \lim ||a^n||^{1/n} \le ||a||.$$

That ρ(a) = 0 does not imply a = 0. This is why we usually work with semisimple algebras: a = 0 in such an algebra if and only if ρ(a + x) = ρ(a) for each x with ρ(x) = 0 (J. Zemánek).

The spectral radius and the norm

We have

$$\rho(a) = \lim ||a^n||^{1/n} \le ||a||.$$

That ρ(a) = 0 does not imply a = 0. This is why we usually work with semisimple algebras: a = 0 in such an algebra if and only if ρ(a + x) = ρ(a) for each x with ρ(x) = 0 (J. Zemánek).

• We have
$$\rho(\lambda a) = |\lambda| \rho(a)$$
.

The spectral radius and the norm

We have

$$\rho(a) = \lim ||a^n||^{1/n} \le ||a||.$$

- That ρ(a) = 0 does not imply a = 0. This is why we usually work with semisimple algebras: a = 0 in such an algebra if and only if ρ(a + x) = ρ(a) for each x with ρ(x) = 0 (J. Zemánek).
- We have $\rho(\lambda a) = |\lambda|\rho(a)$.
- Do we have $ho(a+b) \leq
 ho(a) +
 ho(b)$ for every $a,b \in \mathcal{A}?$

The spectral radius and the norm

We have

$$\rho(a) = \lim ||a^n||^{1/n} \le ||a||.$$

- That ρ(a) = 0 does not imply a = 0. This is why we usually work with semisimple algebras: a = 0 in such an algebra if and only if ρ(a + x) = ρ(a) for each x with ρ(x) = 0 (J. Zemánek).
- We have $\rho(\lambda a) = |\lambda|\rho(a)$.
- Do we have $ho(a+b) \leq
 ho(a) +
 ho(b)$ for every $a, b \in \mathcal{A}$?
- If a and b commute, then

$$\sigma(\mathbf{a} + \mathbf{b}) \subseteq \sigma(\mathbf{a}) + \sigma(\mathbf{b}),$$

and

$$\rho(\mathbf{a} + \mathbf{b}) \leq \rho(\mathbf{a}) + \rho(\mathbf{b}).$$

The spectral radius and the norm

We have

$$\rho(a) = \lim ||a^n||^{1/n} \le ||a||.$$

- That ρ(a) = 0 does not imply a = 0. This is why we usually work with semisimple algebras: a = 0 in such an algebra if and only if ρ(a + x) = ρ(a) for each x with ρ(x) = 0 (J. Zemánek).
- We have $\rho(\lambda a) = |\lambda|\rho(a)$.
- Do we have $ho(a+b) \leq
 ho(a) +
 ho(b)$ for every $a, b \in \mathcal{A}$?
- If a and b commute, then

$$\sigma(\mathbf{a} + \mathbf{b}) \subseteq \sigma(\mathbf{a}) + \sigma(\mathbf{b}),$$

and

$$\rho(\mathbf{a} + \mathbf{b}) \leq \rho(\mathbf{a}) + \rho(\mathbf{b}).$$

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Kaplansky's problem ('70)

• Let \mathcal{A} and \mathcal{B} be semisimple Banach algebras and $\phi: \mathcal{A} \to \mathcal{B}$ linear, unital and surjective such that

$$\sigma(\phi(x)) \subseteq \sigma(x) \quad (\forall x \in \mathcal{A}). \tag{1}$$

Does-it follow that ϕ is a Jordan morphism, that is

$$\phi(x^2) = \phi(x)^2 \quad (\forall x \in \mathcal{A})?$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Kaplansky's problem ('70)

• Let A and B be semisimple Banach algebras and $\phi: A \to B$ linear, unital and surjective such that

$$\sigma(\phi(x)) \subseteq \sigma(x) \quad (\forall x \in \mathcal{A}). \tag{1}$$

Does-it follow that ϕ is a Jordan morphism, that is

$$\phi(x^2) = \phi(x)^2 \quad (\forall x \in \mathcal{A})?$$

 (Gleason (1967), Kahane–Żelazko (1968)) φ : A → C linear and φ(x) ∈ σ(x) for each x ∈ A implies that φ is a character of A.

| 4 同 1 4 三 1 4 三 1

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Kaplansky's problem ('70)

• Let A and B be semisimple Banach algebras and $\phi: A \to B$ linear, unital and surjective such that

$$\sigma(\phi(x)) \subseteq \sigma(x) \quad (\forall x \in \mathcal{A}). \tag{1}$$

Does-it follow that ϕ is a Jordan morphism, that is

$$\phi(x^2) = \phi(x)^2 \quad (\forall x \in \mathcal{A})?$$

 (Gleason (1967), Kahane–Żelazko (1968)) φ : A → C linear and φ(x) ∈ σ(x) for each x ∈ A implies that φ is a character of A.

| 4 同 1 4 三 1 4 三 1

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Variants of Kaplansky's problem

• (Spectrum-preserving maps) Instead of (1), we have that

$$\sigma(\phi(x)) = \sigma(x) \quad (\forall x \in \mathcal{A}).$$
(2)

- 4 同 6 4 日 6 4 日 6

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Variants of Kaplansky's problem

• (Spectrum-preserving maps) Instead of (1), we have that

$$\sigma(\phi(x)) = \sigma(x) \quad (\forall x \in \mathcal{A}).$$
(2)

• (Spectrally bounded maps) Instead of (1), we have that there exists M > 0 such that

$$\rho(\phi(x)) \le M\rho(x) \quad (\forall x \in \mathcal{A}).$$
(3)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Variants of Kaplansky's problem

• (Spectrum-preserving maps) Instead of (1), we have that

$$\sigma(\phi(x)) = \sigma(x) \quad (\forall x \in \mathcal{A}).$$
(2)

• (Spectrally bounded maps) Instead of (1), we have that there exists M > 0 such that

$$\rho(\phi(x)) \le M\rho(x) \quad (\forall x \in \mathcal{A}).$$
(3)

• (Spectral isometries) Instead of (1), we have that

$$\rho(\phi(x)) = \rho(x) \quad (\forall x \in \mathcal{A}).$$
(4)

- 4 同 6 4 日 6 4 日 6

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Variants of Kaplansky's problem

• (Spectrum-preserving maps) Instead of (1), we have that

$$\sigma(\phi(x)) = \sigma(x) \quad (\forall x \in \mathcal{A}).$$
(2)

• (Spectrally bounded maps) Instead of (1), we have that there exists M > 0 such that

$$\rho(\phi(x)) \le M\rho(x) \quad (\forall x \in \mathcal{A}).$$
(3)

• (Spectral isometries) Instead of (1), we have that

$$\rho(\phi(x)) = \rho(x) \quad (\forall x \in \mathcal{A}).$$
(4)

• Consider particular cases of Banach algebras.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Variants of Kaplansky's problem

• (Spectrum-preserving maps) Instead of (1), we have that

$$\sigma(\phi(x)) = \sigma(x) \quad (\forall x \in \mathcal{A}).$$
(2)

• (Spectrally bounded maps) Instead of (1), we have that there exists M > 0 such that

$$\rho(\phi(x)) \le M\rho(x) \quad (\forall x \in \mathcal{A}).$$
(3)

• (Spectral isometries) Instead of (1), we have that

$$\rho(\phi(x)) = \rho(x) \quad (\forall x \in \mathcal{A}).$$
(4)

• Consider particular cases of Banach algebras.

Kaplansky's problem Variants of Kaplansky's problem **Spectral isometries** Results

Spectral isometries

 Let A and B be semisimple Banach algebras and φ : A → B a linear, unital and surjective spectral isometry. Then:

- 4 同 6 4 日 6 4 日 6

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Spectral isometries

- Let \mathcal{A} and \mathcal{B} be semisimple Banach algebras and $\phi : \mathcal{A} \to \mathcal{B}$ a **linear, unital and surjective** spectral isometry. Then:
- ϕ is continuous and injective, and therefore a topological isomorphism;

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Spectral isometries

- Let \mathcal{A} and \mathcal{B} be semisimple Banach algebras and $\phi : \mathcal{A} \to \mathcal{B}$ a **linear, unital and surjective** spectral isometry. Then:
- ϕ is continuous and injective, and therefore a topological isomorphism;
- ϕ preserves the peripheral spectrum;

(人間) ト く ヨ ト く ヨ ト

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Spectral isometries

- Let \mathcal{A} and \mathcal{B} be semisimple Banach algebras and $\phi : \mathcal{A} \to \mathcal{B}$ a **linear, unital and surjective** spectral isometry. Then:
- ϕ is continuous and injective, and therefore a topological isomorphism;
- ϕ preserves the peripheral spectrum;
- ϕ preserves the convex hull of the spectrum;

(4月) (4日) (4日)

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Spectral isometries

- Let \mathcal{A} and \mathcal{B} be semisimple Banach algebras and $\phi : \mathcal{A} \to \mathcal{B}$ a **linear, unital and surjective** spectral isometry. Then:
- ϕ is continuous and injective, and therefore a topological isomorphism;
- ϕ preserves the peripheral spectrum;
- ϕ preserves the convex hull of the spectrum;
- We do not know if φ preserves the whole spectrum, or if it preserves at least the poynomial convex hull of the spectrum.

・ロト ・同ト ・ヨト ・ヨト

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries Results

Spectral isometries

- Let \mathcal{A} and \mathcal{B} be semisimple Banach algebras and $\phi : \mathcal{A} \to \mathcal{B}$ a **linear, unital and surjective** spectral isometry. Then:
- ϕ is continuous and injective, and therefore a topological isomorphism;
- ϕ preserves the peripheral spectrum;
- ϕ preserves the convex hull of the spectrum;
- We do not know if φ preserves the whole spectrum, or if it preserves at least the poynomial convex hull of the spectrum.

・ロト ・同ト ・ヨト ・ヨト

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

• Theorem (A. A. Jafarian and A. R. Sourour, J. Funct. Anal., 1986). $\mathcal{A} = \mathcal{B} = \mathcal{L}(X)$, with X Banach space and $\sigma(\phi(x)) = \sigma(x)$, $\forall x \in \mathcal{A} \Rightarrow \phi$ is a Jordan morphism.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case $\mathcal{L}(X)$

- Theorem (A. A. Jafarian and A. R. Sourour, J. Funct. Anal., 1986). $\mathcal{A} = \mathcal{B} = \mathcal{L}(X)$, with X Banach space and $\sigma(\phi(x)) = \sigma(x)$, $\forall x \in \mathcal{A} \Rightarrow \phi$ is a Jordan morphism.
- Theorem (M. Brešar and P. Šemrl, J. Funct. Anal., 1996). $\mathcal{A} = \mathcal{B} = \mathcal{L}(X)$, with X Banach space and $\rho(\phi(x)) = \rho(x)$, $\forall x \in \mathcal{A} \Rightarrow \phi$ is a Jordan morphism.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case $\mathcal{L}(X)$

- Theorem (A. A. Jafarian and A. R. Sourour, J. Funct. Anal., 1986). $\mathcal{A} = \mathcal{B} = \mathcal{L}(X)$, with X Banach space and $\sigma(\phi(x)) = \sigma(x)$, $\forall x \in \mathcal{A} \Rightarrow \phi$ is a Jordan morphism.
- Theorem (M. Brešar and P. Šemrl, J. Funct. Anal., 1996). $\mathcal{A} = \mathcal{B} = \mathcal{L}(X)$, with X Banach space and $\rho(\phi(x)) = \rho(x)$, $\forall x \in \mathcal{A} \Rightarrow \phi$ is a Jordan morphism.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of algebras having finite-dimensional representations

Theorem (B. Aupetit, Pac. J. Math., 1979). B = M_n and σ(φ(x)) ⊆ σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of algebras having finite-dimensional representations

- Theorem (B. Aupetit, Pac. J. Math., 1979). $B = M_n$ and $\sigma(\phi(x)) \subseteq \sigma(x), \ \forall x \in A \Rightarrow \phi$ is a Jordan morphism.
- The same holds for *B* having a separating family of finite-dimensional irreducible representations.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of algebras having finite-dimensional representations

- Theorem (B. Aupetit, Pac. J. Math., 1979). $B = M_n$ and $\sigma(\phi(x)) \subseteq \sigma(x), \ \forall x \in A \Rightarrow \phi$ is a Jordan morphism.
- The same holds for *B* having a separating family of finite-dimensional irreducible representations.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of von Neumann algebras

Theorem (B. Aupetit, J. London Math. Soc., 2000). A and B are von Neumann algebras and σ(φ(x)) = σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of von Neumann algebras

- Theorem (B. Aupetit, J. London Math. Soc., 2000). A and B are von Neumann algebras and σ(φ(x)) = σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.
- Idea: The map ϕ sends projections into idempotents!

▲ □ ▶ ▲ □ ▶ ▲

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of von Neumann algebras

- Theorem (B. Aupetit, J. London Math. Soc., 2000). A and B are von Neumann algebras and σ(φ(x)) = σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.
- Idea: The map ϕ sends projections into idempotents!
- Characterization of idempotents in terms of the spectrum function!

- 4 同 ト 4 ヨ ト 4 ヨ ト
Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of von Neumann algebras

- Theorem (B. Aupetit, J. London Math. Soc., 2000). A and B are von Neumann algebras and σ(φ(x)) = σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.
- Idea: The map ϕ sends projections into idempotents!
- Characterization of idempotents in terms of the spectrum function!
- For the case of spectral isometries: partial results for particular cases of C*-algebras.

| 4 同 1 4 三 1 4 三 1

Kaplansky's problem Variants of Kaplansky's problem Spectral isometries **Results**

The case of von Neumann algebras

- Theorem (B. Aupetit, J. London Math. Soc., 2000). A and B are von Neumann algebras and σ(φ(x)) = σ(x), ∀x ∈ A ⇒ φ is a Jordan morphism.
- Idea: The map ϕ sends projections into idempotents!
- Characterization of idempotents in terms of the spectrum function!
- For the case of spectral isometries: partial results for particular cases of C*-algebras.

| 4 同 1 4 三 1 4 三 1

For T ∈ L(X), its local resolvent set at x ∈ X is the union of all open subsets U ⊆ C for which there exists an analytic function f : U → X such that (T − λI) f (λ) = x for all λ ∈ U. The local spectrum of T at x, denoted by σ_T(x), is defined as the complement in C of the local resolvent set of T at x.

- For T ∈ L(X), its local resolvent set at x ∈ X is the union of all open subsets U ⊆ C for which there exists an analytic function f : U → X such that (T − λI) f (λ) = x for all λ ∈ U. The local spectrum of T at x, denoted by σ_T(x), is defined as the complement in C of the local resolvent set of T at x.
- For each x ∈ X and T ∈ L(X), we have that σ_T(x) is a (possible empty) closed subset of σ(T), the classical spectrum of T.

・ 同・ ・ ヨ・

- For T ∈ L(X), its local resolvent set at x ∈ X is the union of all open subsets U ⊆ C for which there exists an analytic function f : U → X such that (T − λI) f (λ) = x for all λ ∈ U. The local spectrum of T at x, denoted by σ_T(x), is defined as the complement in C of the local resolvent set of T at x.
- For each x ∈ X and T ∈ L(X), we have that σ_T(x) is a (possible empty) closed subset of σ(T), the classical spectrum of T.

・ 同・ ・ ヨ・

Definitions The spectrum and the local spectrum

The local spectrum at some vector

• The local spectral radius of T at x is defined by

$$r_T(x) = \limsup_{k \to \infty} ||T^k(x)||^{1/k}.$$

< A ▶

• The local spectral radius of T at x is defined by

$$r_{\mathcal{T}}(x) = \limsup_{k \to \infty} ||\mathcal{T}^k(x)||^{1/k}.$$

For *T* ∈ *M_n* and denote by *λ*₁, ..., *λ_k* the distinct eigenvalues of *T* and by *N*₁, ..., *N_k* the corresponding root spaces. We have Cⁿ = *N*₁ ⊕ ··· ⊕ *N_k* and *T* = *T*₁ ⊕ ··· ⊕ *T_k*, where *T_j* is the restriction of *T* to *N_j*. Let *P_j* : Cⁿ → *N_j* ⊆ Cⁿ, *j* = 1, ..., *k*, denote the canonical projections. Then

$$\sigma_{T}(x) = \bigcup_{1 \le j \le k} \{\lambda_{j} : P_{j}(x) \neq 0\}.$$

• The local spectral radius of T at x is defined by

$$r_{\mathcal{T}}(x) = \limsup_{k \to \infty} ||\mathcal{T}^k(x)||^{1/k}.$$

For *T* ∈ *M_n* and denote by *λ*₁, ..., *λ_k* the distinct eigenvalues of *T* and by *N*₁, ..., *N_k* the corresponding root spaces. We have Cⁿ = *N*₁ ⊕ ··· ⊕ *N_k* and *T* = *T*₁ ⊕ ··· ⊕ *T_k*, where *T_j* is the restriction of *T* to *N_j*. Let *P_j* : Cⁿ → *N_j* ⊆ Cⁿ, *j* = 1, ..., *k*, denote the canonical projections. Then

$$\sigma_{T}(x) = \bigcup_{1 \le j \le k} \{\lambda_{j} : P_{j}(x) \neq 0\}.$$

Definitions The spectrum and the local spectrum

The single-valued extension property

An operator T ∈ L(X) is said to have the SVEP at a point λ₀ ∈ C if for every neighbourhood U of λ₀ the only analytic function h : U → X which satisfies the equation (T − λI) h(λ) = 0 on U is the trivial one.

- An operator T ∈ L(X) is said to have the SVEP at a point λ₀ ∈ C if for every neighbourhood U of λ₀ the only analytic function h : U → X which satisfies the equation (T − λI) h(λ) = 0 on U is the trivial one.
- We say that T has the SVEP if it has the SVEP at every $\lambda \in \mathbf{C}$.

- An operator T ∈ L(X) is said to have the SVEP at a point λ₀ ∈ C if for every neighbourhood U of λ₀ the only analytic function h : U → X which satisfies the equation (T − λI) h(λ) = 0 on U is the trivial one.
- We say that T has the SVEP if it has the SVEP at every $\lambda \in \mathbf{C}$.
- If T has the SVEP and x is a nonzero vector in X, then $\sigma_T(x)$ is not empty.

- 同 ト - ヨ ト - - ヨ ト

- An operator T ∈ L(X) is said to have the SVEP at a point λ₀ ∈ C if for every neighbourhood U of λ₀ the only analytic function h : U → X which satisfies the equation (T − λI) h(λ) = 0 on U is the trivial one.
- We say that T has the SVEP if it has the SVEP at every $\lambda \in \mathbf{C}$.
- If *T* has the SVEP and *x* is a nonzero vector in *X*, then *σ*_T (*x*) is not empty.
- Any *T* ∈ *L*(*X*) for which its point spectrum has empty interior has SVEP.

- 4 同 6 4 日 6 4 日 6

- An operator T ∈ L(X) is said to have the SVEP at a point λ₀ ∈ C if for every neighbourhood U of λ₀ the only analytic function h : U → X which satisfies the equation (T − λI) h(λ) = 0 on U is the trivial one.
- We say that T has the SVEP if it has the SVEP at every $\lambda \in \mathbf{C}$.
- If *T* has the SVEP and *x* is a nonzero vector in *X*, then *σ*_T (*x*) is not empty.
- Any *T* ∈ *L*(*X*) for which its point spectrum has empty interior has SVEP.

- 4 同 6 4 日 6 4 日 6

Definitions The spectrum and the local spectrum

The spectrum and the local spectrum

• For any operator $T \in \mathcal{L}(X)$, we have that

Definitions The spectrum and the local spectrum

The spectrum and the local spectrum

• For any operator $\mathcal{T}\in\mathcal{L}\left(X
ight)$, we have that

•
$$\sigma_{su}(T) = \bigcup_{x \in X} \sigma_T(x);$$

• For any operator $\mathcal{T}\in\mathcal{L}\left(X
ight)$, we have that

•
$$\sigma_{su}(T) = \bigcup_{x \in X} \sigma_T(x);$$

•
$$\rho(T) = \sup\{r_T(x) : x \in X\};$$

• For any operator $\mathcal{T}\in\mathcal{L}\left(X
ight)$, we have that

•
$$\sigma_{su}(T) = \cup_{x \in X} \sigma_T(x);$$

• $\rho(T) = \sup\{r_T(x) : x \in X\};$

The set

$$\{x \in X : \sigma_{su}(T) = \sigma_{T}(x)\}$$

is of the second Baire category in X;

• For any operator $\mathcal{T}\in\mathcal{L}\left(X
ight)$, we have that

•
$$\sigma_{su}(T) = \bigcup_{x \in X} \sigma_T(x);$$

- $\rho(T) = \sup\{r_T(x) : x \in X\};$
- The set

$$\{x \in X : \sigma_{su}(T) = \sigma_{T}(x)\}$$

is of the second Baire category in X;

• The set

$$\{x \in X : \rho(T) = r_T(x)\}$$

is of the second Baire category in X.

< E.

• For any operator $\mathcal{T}\in\mathcal{L}\left(X
ight)$, we have that

•
$$\sigma_{su}(T) = \bigcup_{x \in X} \sigma_T(x);$$

- $\rho(T) = \sup\{r_T(x) : x \in X\};$
- The set

$$\{x \in X : \sigma_{su}(T) = \sigma_{T}(x)\}$$

is of the second Baire category in X;

• The set

$$\{x \in X : \rho(T) = r_T(x)\}$$

is of the second Baire category in X.

< E.

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Local spectra preserver

 Theorem (A. Bourhim and T. Ransford, Int. Eq. Oper. Th., 2005) Let φ : L(X) → L(X) be an additive map such that

$$\sigma_{\varphi(T)}(x) = \sigma_T(x) \qquad (T \in \mathcal{L}(X); \ x \in X).$$

Then $\varphi(T) = T$ for all $T \in \mathcal{L}(X)$.

< 🗇 > < 🖃 >

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Local spectra preserver

 Theorem (A. Bourhim and T. Ransford, Int. Eq. Oper. Th., 2005) Let φ : L(X) → L(X) be an additive map such that

$$\sigma_{\varphi(T)}(x) = \sigma_T(x) \qquad (T \in \mathcal{L}(X); \ x \in X).$$

Then $\varphi(T) = T$ for all $T \in \mathcal{L}(X)$.

< 🗇 > < 🖃 >

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectral radius

 Theorem (J. Bračič and V. Müller, Studia Math. 2009) Let φ : L(X) → L(X) be a continuous surjective linear map and x₀ ≠ 0 in X.

i) If

$$\sigma_{\varphi(T)}(x_0) = \sigma_T(x_0) \qquad (T \in \mathcal{L}(X)),$$

there exists an invertible $A \in \mathcal{L}(X)$ such that $Ax_0 = x_0$ and

$$\varphi(T) = ATA^{-1}$$
 $(T \in \mathcal{L}(X)).$

ii) If

$$r_{\varphi(T)}(x_0) = r_T(x_0)$$
 $(T \in \mathcal{L}(X)),$

there exists an invertible $A \in \mathcal{L}(X)$ and an unimodular complex constant c such that $Ax_0 = x_0$ and

$$\varphi(T) = cATA^{-1}$$
 $(T \in \mathcal{L}(X)).$

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectral radius

 Theorem (J. Bračič and V. Müller, Studia Math. 2009) Let φ : L(X) → L(X) be a continuous surjective linear map and x₀ ≠ 0 in X.

i) If

$$\sigma_{\varphi(T)}(x_0) = \sigma_T(x_0) \qquad (T \in \mathcal{L}(X)),$$

there exists an invertible $A \in \mathcal{L}(X)$ such that $Ax_0 = x_0$ and

$$\varphi(T) = ATA^{-1}$$
 $(T \in \mathcal{L}(X)).$

ii) If

$$r_{\varphi(T)}(x_0) = r_T(x_0)$$
 $(T \in \mathcal{L}(X)),$

there exists an invertible $A \in \mathcal{L}(X)$ and an unimodular complex constant c such that $Ax_0 = x_0$ and

$$\varphi(T) = cATA^{-1}$$
 $(T \in \mathcal{L}(X)).$

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectrum/spectral radius

Ideea: the set of all operators *T* ∈ *L*(*X*) such that the surjectivity spectrum of *T* coincides with *σ*_T (*x*₀) is dense in *L*(*X*). As a corollary, we obtain that the set of all *T* ∈ *L*(*X*) such that *r*_T (*x*₀) = *ρ*(*T*) is also dense. Then using the continuity hypothesis we have *ρ*(*φ*(*T*)) = *ρ*(*T*) for all *T* ∈ *L*(*X*). The surjective spectral isometries of *L*(*X*) are of a standard form!

- 同 ト - ヨ ト - - ヨ ト

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectrum/spectral radius

Ideea: the set of all operators *T* ∈ *L*(*X*) such that the surjectivity spectrum of *T* coincides with *σ*_T (*x*₀) is dense in *L*(*X*). As a corollary, we obtain that the set of all *T* ∈ *L*(*X*) such that *r*_T (*x*₀) = *ρ*(*T*) is also dense. Then using the continuity hypothesis we have *ρ*(*φ*(*T*)) = *ρ*(*T*) for all *T* ∈ *L*(*X*). The surjective spectral isometries of *L*(*X*) are of a standard form!

- 同 ト - ヨ ト - - ヨ ト

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectral radius

 Theorem (-, 2010) Let x₀ ∈ X be a fixed non-zero vector, and let φ : L(X) → L(X) be a linear surjective map for which there exists M > 0 such that

$$r_{\varphi(T)}(x_0) \leq Mr_T(x_0) \qquad (T \in \mathcal{L}(X)).$$

Then φ is automatically continuous.

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectral radius

 Theorem (-, 2010) Let x₀ ∈ X be a fixed non-zero vector, and let φ : L(X) → L(X) be a linear surjective map for which there exists M > 0 such that

$$r_{\varphi(T)}(x_0) \leq Mr_T(x_0) \qquad (T \in \mathcal{L}(X)).$$

Then φ is automatically continuous.

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectral radius zero

(-, 2012) Let φ : L(X) → L(X) be linear and surjective such that for every x ∈ X we have

$$r_{T}(x) = 0$$
 if and only if $r_{\varphi(T)}(x) = 0$.

There exists then a nonzero complex number c such that $\varphi(T) = cT$ for every $T \in \mathcal{L}(X)$.

・ 同・ ・ ヨ・

A first result Preservers of local spectrum/spectral radius An automatic continuity problem Preservers of local spectral radius zero

Preservers of local spectral radius zero

(-, 2012) Let φ : L(X) → L(X) be linear and surjective such that for every x ∈ X we have

$$r_{T}(x) = 0$$
 if and only if $r_{\varphi(T)}(x) = 0$.

There exists then a nonzero complex number c such that $\varphi(T) = cT$ for every $T \in \mathcal{L}(X)$.

・ 同・ ・ ヨ・

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

▲ 同 ▶ → 三 ▶

Some new definitions

For a closed subset F ⊆ C and an operator T ∈ L(X), we defined the glocal spectral subspace of T as

$$\chi_T(F) = \{x \in X : (T - \lambda I)f(\lambda) = x \text{ has an analytic sol. on } \mathbf{C} \setminus F\}$$

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

▲ 同 ▶ → 三 ▶

Some new definitions

For a closed subset F ⊆ C and an operator T ∈ L(X), we defined the glocal spectral subspace of T as

$$\chi_T(F) = \{x \in X : (T - \lambda I)f(\lambda) = x \text{ has an analytic sol. on } \mathbf{C} \setminus F\}.$$

• We have

$$r_T(x) = \inf\{r \ge 0 : x \in \chi_T(\overline{D}(0; r))\}.$$

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

▲ 同 ▶ → 三 ▶

Some new definitions

For a closed subset F ⊆ C and an operator T ∈ L(X), we defined the glocal spectral subspace of T as

$$\chi_T(F) = \{x \in X : (T - \lambda I)f(\lambda) = x \text{ has an analytic sol. on } \mathbf{C} \setminus F\}.$$

• We have

$$r_T(x) = \inf\{r \ge 0 : x \in \chi_T(\overline{D}(0; r))\}.$$

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

▲ 同 ▶ → 三 ▶

Some new definitions

For a closed subset F ⊆ C and an operator T ∈ L(X), we defined the glocal spectral subspace of T as

$$\chi_T(F) = \{x \in X : (T - \lambda I)f(\lambda) = x \text{ has an analytic sol. on } \mathbf{C} \setminus F\}.$$

• We have

$$r_T(x) = \inf\{r \ge 0 : x \in \chi_T(\overline{D}(0; r))\}.$$

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Some new definitions

Define

$$i_{\mathcal{T}}(x) = \sup\{r \geq 0 : x \in \chi_{\mathcal{T}}(\mathbf{C} \setminus D(0; r))\}.$$

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

(日) (同) (三) (三)

Some new definitions

Define

$$i_{T}(x) = \sup\{r \geq 0 : x \in \chi_{T}(\mathbf{C} \setminus D(0; r))\}.$$

Define

$$\Gamma_{T}(x) = \max\{|\lambda| : \lambda \in \sigma_{T}(x)\}$$

and

$$\gamma_{T}(\mathbf{x}) = \min\{|\lambda| : \lambda \in \sigma_{T}(\mathbf{x})\},\$$

with the convention that $\Gamma_T(x) = -\infty$ and $\gamma_T(x) = +\infty$ precisely when $\sigma_T(x)$ is empty.

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

(日) (同) (三) (三)

Some new definitions

Define

$$i_T(x) = \sup\{r \ge 0 : x \in \chi_T(\mathbf{C} \setminus D(0; r))\}.$$

Define

$$\Gamma_{T}(x) = \max\{|\lambda| : \lambda \in \sigma_{T}(x)\}$$

and

$$\gamma_{T}(\mathbf{x}) = \min\{|\lambda| : \lambda \in \sigma_{T}(\mathbf{x})\},\$$

with the convention that $\Gamma_{T}(x) = -\infty$ and $\gamma_{T}(x) = +\infty$ precisely when $\sigma_{T}(x)$ is empty.

We have

$$i_{T}(x) \leq \gamma_{T}(x) \leq \Gamma_{T}(x) \leq r_{T}(x)$$

when $\sigma_T(x)$ is not empty.
The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

(日) (同) (三) (三)

Some new definitions

Define

$$i_T(x) = \sup\{r \ge 0 : x \in \chi_T(\mathbf{C} \setminus D(0; r))\}.$$

Define

$$\Gamma_{T}(x) = \max\{|\lambda| : \lambda \in \sigma_{T}(x)\}$$

and

$$\gamma_{T}(\mathbf{x}) = \min\{|\lambda| : \lambda \in \sigma_{T}(\mathbf{x})\},\$$

with the convention that $\Gamma_{T}(x) = -\infty$ and $\gamma_{T}(x) = +\infty$ precisely when $\sigma_{T}(x)$ is empty.

We have

$$i_{T}(x) \leq \gamma_{T}(x) \leq \Gamma_{T}(x) \leq r_{T}(x)$$

when $\sigma_T(x)$ is not empty.

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

▲ 同 ▶ → 三 ▶

Automatic continuity

Theorem (-, 2017). Fix a nonzero vector x₀ ∈ X and let φ : L(X) → L(X) be a linear surjective map such that

$$\Gamma_{\varphi(T)}(x_0) \leq \rho(T)$$
 $(T \in \mathcal{L}(X)).$

Then φ is continuous.

| 4 同 1 4 三 1 4 三 1

Automatic continuity

Theorem (-, 2017). Fix a nonzero vector x₀ ∈ X and let φ : L(X) → L(X) be a linear surjective map such that

$$\Gamma_{\varphi(T)}(x_0) \leq \rho(T)$$
 $(T \in \mathcal{L}(X)).$

Then φ is continuous.

Corollary. Let φ : L(X) → L(X) be a linear surjective map such that

$$\sigma_{\varphi(T)}(x_0) \subseteq \sigma_T(x_0) \qquad (T \in \mathcal{L}(X)).$$

Then φ is continuous.

| 4 同 1 4 三 1 4 三 1

Automatic continuity

Theorem (-, 2017). Fix a nonzero vector x₀ ∈ X and let φ : L(X) → L(X) be a linear surjective map such that

$$\Gamma_{\varphi(T)}(x_0) \leq \rho(T)$$
 $(T \in \mathcal{L}(X)).$

Then φ is continuous.

Corollary. Let φ : L(X) → L(X) be a linear surjective map such that

$$\sigma_{\varphi(T)}(x_0) \subseteq \sigma_T(x_0) \qquad (T \in \mathcal{L}(X)).$$

Then φ is continuous.

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius

Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

・ 同 ト ・ ヨ ト ・ ヨ ト

Preservers of inner/outer local spectral radius

Theorem (-, 2018). Let φ : L(X) → L(X) be a linear surjective map such that

 $\sigma_{\varphi(T)}(x) \cap \sigma_{T}(x) \neq \emptyset$

for each $T \in \mathcal{L}(X)$ and $x \in X$ such that at least one of the above sets is nonempty. Then φ is the identity of $\mathcal{L}(X)$.

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius

Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

Preservers of inner/outer local spectral radius

Theorem (-, 2018). Let φ : L(X) → L(X) be a linear surjective map such that

$$\sigma_{\varphi(\mathcal{T})}(\mathbf{x}) \cap \sigma_{\mathcal{T}}(\mathbf{x}) \neq \emptyset$$

for each $T \in \mathcal{L}(X)$ and $x \in X$ such that at least one of the above sets is nonempty. Then φ is the identity of $\mathcal{L}(X)$.

Theorem (-, 2018). Suppose φ : L(X) → L(X) is a linear and surjective map such that

$$\gamma_{\varphi(T)}(x) \leq \Gamma_T(x)$$

and

$$\gamma_{T}(x) \leq \Gamma_{\varphi(T)}(x)$$

for each $T \in \mathcal{L}(X)$ and $x \in X$ such that at least one of the sets $\sigma_{\varphi(T)}(x)$ and $\sigma_T(x)$ is nonempty. There exists then a unimodular *c* such that $\varphi(T) = cT$ for every $T \in \mathcal{L}(X)$.

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius

Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

Preservers of inner/outer local spectral radius

Theorem (-, 2018). Let φ : L(X) → L(X) be a linear surjective map such that

$$\sigma_{\varphi(\mathcal{T})}(\mathbf{x}) \cap \sigma_{\mathcal{T}}(\mathbf{x}) \neq \emptyset$$

for each $T \in \mathcal{L}(X)$ and $x \in X$ such that at least one of the above sets is nonempty. Then φ is the identity of $\mathcal{L}(X)$.

Theorem (-, 2018). Suppose φ : L(X) → L(X) is a linear and surjective map such that

$$\gamma_{\varphi(T)}(x) \leq \Gamma_T(x)$$

and

$$\gamma_{T}(x) \leq \Gamma_{\varphi(T)}(x)$$

for each $T \in \mathcal{L}(X)$ and $x \in X$ such that at least one of the sets $\sigma_{\varphi(T)}(x)$ and $\sigma_T(x)$ is nonempty. There exists then a unimodular *c* such that $\varphi(T) = cT$ for every $T \in \mathcal{L}(X)$.

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius

Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

同 ト イ ヨ ト イ ヨ ト

Preservers of inner/outer local spectral radius

Theorem (-, 2018). Let φ : L(X) → L(X) be a linear surjective map such that for each T ∈ L(X) and x ∈ X such that at least one of the sets σ_{φ(T)}(x) and σ_T(x) is nonempty, there exist α ∈ σ_{φ(T)}(x) and β ∈ σ_T(x) such that |α| = |β|. There exists then a unimodular constant c such that φ(T) = cT for every T.

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius

Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

同 ト イ ヨ ト イ ヨ ト

Preservers of inner/outer local spectral radius

Theorem (-, 2018). Let φ : L(X) → L(X) be a linear surjective map such that for each T ∈ L(X) and x ∈ X such that at least one of the sets σ_{φ(T)}(x) and σ_T(x) is nonempty, there exist α ∈ σ_{φ(T)}(x) and β ∈ σ_T(x) such that |α| = |β|. There exists then a unimodular constant c such that φ(T) = cT for every T.

Image: A image: A

Preservers on matrices

Theorem (M. González and M. Mbekhta, Linear Algebra Appl., 2007). Fix a nonzero vector x₀ ∈ Cⁿ and let φ : M_n → M_n be a linear map such that

$$\sigma_{\varphi(T)}(x_0) = \sigma_T(x_0) \qquad (T \in \mathcal{M}_n).$$

There exists then an invertible matrix $A \in \mathcal{M}_n$ such that $Ax_0 = x_0$ and

$$\varphi(T) = ATA^{-1} \qquad (T \in \mathcal{M}_n).$$

Image: A image: A

Preservers on matrices

Theorem (M. González and M. Mbekhta, Linear Algebra Appl., 2007). Fix a nonzero vector x₀ ∈ Cⁿ and let φ : M_n → M_n be a linear map such that

$$\sigma_{\varphi(T)}(x_0) = \sigma_T(x_0) \qquad (T \in \mathcal{M}_n).$$

There exists then an invertible matrix $A \in \mathcal{M}_n$ such that $Ax_0 = x_0$ and

$$\varphi(T) = ATA^{-1} \qquad (T \in \mathcal{M}_n).$$

Local spectra preservers on matrices

Theorem (A. Bourhim and V.G. Miller, Studia Math., 2008). Fix a nonzero vector x₀ ∈ Cⁿ and let φ : M_n → M_n be a linear map such that

$$r_{\varphi(T)}(x_0) = r_T(x_0)$$
 $(T \in \mathcal{M}_n).$

There exist then a unimodular complex constant c and an invertible matrix $A \in \mathcal{M}_n$ such that $Ax_0 = x_0$ and

$$\varphi(T) = cATA^{-1} \qquad (T \in \mathcal{M}_n).$$

Local spectra preservers on matrices

Theorem (A. Bourhim and V.G. Miller, Studia Math., 2008). Fix a nonzero vector x₀ ∈ Cⁿ and let φ : M_n → M_n be a linear map such that

$$r_{\varphi(T)}(x_0) = r_T(x_0)$$
 $(T \in \mathcal{M}_n).$

There exist then a unimodular complex constant c and an invertible matrix $A \in \mathcal{M}_n$ such that $Ax_0 = x_0$ and

$$\varphi(T) = cATA^{-1} \qquad (T \in \mathcal{M}_n).$$

Maps preserving matrices of local spectral radius zero at some fixed vector

Theorem (A. Bourhim and -, 2018). For a nonzero fixed vector x₀ ∈ C², a linear map φ on M₂ satisfies

$$r_{\mathcal{T}}(x_0) = 0 \iff r_{\varphi(\mathcal{T})}(x_0) = 0 \qquad (\mathcal{T} \in \mathcal{M}_2)$$

if and only if there exists a nonzero scalar α , an invertible matrix $U \in \mathcal{M}_2$ for which $Ux_0 = x_0$ and a matrix $Q \in \mathcal{M}_2$ satisfying $Qx_0 = 0$ and $tr(Q) \neq -1$ such that

$$\varphi(T) = \alpha \left(UTU^{-1} + \operatorname{tr}(T) \cdot Q \right)$$

for all $T \in \mathcal{M}_2$.

Maps preserving matrices of local spectral radius zero at some fixed vector

Theorem (A. Bourhim and -, 2018). For a nonzero fixed vector x₀ ∈ C², a linear map φ on M₂ satisfies

$$r_{\mathcal{T}}(x_0) = 0 \iff r_{\varphi(\mathcal{T})}(x_0) = 0 \qquad (\mathcal{T} \in \mathcal{M}_2)$$

if and only if there exists a nonzero scalar α , an invertible matrix $U \in \mathcal{M}_2$ for which $Ux_0 = x_0$ and a matrix $Q \in \mathcal{M}_2$ satisfying $Qx_0 = 0$ and $tr(Q) \neq -1$ such that

$$\varphi(T) = \alpha \left(UTU^{-1} + \operatorname{tr}(T) \cdot Q \right)$$

for all $T \in \mathcal{M}_2$.

(4月) (4日) (4日)

Maps preserving matrices of local spectral radius zero at some fixed vector

Theorem (A. Bourhim and -, 2018). Let n ≥ 3 be a natural number, and fix a nonzero vector x₀ ∈ Cⁿ. A linear map φ : M_n → M_n satisfies

$$r_{T}(x_{0}) = 0 \iff r_{\varphi(T)}(x_{0}) = 0 \qquad (T \in \mathcal{M}_{n})$$

if and only if there exists a nonzero scalar α and an invertible matrix $U \in \mathcal{M}_n$ such that $Ux_0 = x_0$ and

$$\varphi(T) = \alpha U T U^{-1}$$

for all $T \in \mathcal{M}_n$.

(4月) (4日) (4日)

Maps preserving matrices of local spectral radius zero at some fixed vector

Theorem (A. Bourhim and -, 2018). Let n ≥ 3 be a natural number, and fix a nonzero vector x₀ ∈ Cⁿ. A linear map φ : M_n → M_n satisfies

$$r_{T}(x_{0}) = 0 \iff r_{\varphi(T)}(x_{0}) = 0 \qquad (T \in \mathcal{M}_{n})$$

if and only if there exists a nonzero scalar α and an invertible matrix $U \in \mathcal{M}_n$ such that $Ux_0 = x_0$ and

$$\varphi(T) = \alpha U T U^{-1}$$

for all $T \in \mathcal{M}_n$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Maps preserving matrices of inner local spectral radius zero at some fixed vector

Theorem (-, 2018). Let n ≥ 2 be a natural number. Let x₀ ∈ Cⁿ be a fixed nonzero vector and let φ : M_n → M_n be a surjective additive map. Then

$$i_{\mathcal{T}}(x_0) = 0 \Longrightarrow i_{\varphi(\mathcal{T})}(x_0) = 0 \qquad (\mathcal{T} \in \mathcal{M}_n) \qquad (5)$$

if and only if there exist a nonzero c, a field automorphism $\eta : \mathbf{C} \to \mathbf{C}$, an invertible matrix $A \in \mathcal{M}_n$ satisfying $A(x_0^{\eta}) = x_0$ and a vector $f \in \mathbf{C}^n$ satisfying $f^t x_0 \neq 1$ such that $\varphi(T) = cA(T - x_0 f^t T)^{\eta} A^{-1}$ $(T \in \mathcal{M}_n)$. (6)

We arrive at the same conclusion by supposing

$$i_{\varphi(T)}(x_0) = 0 \Rightarrow i_T(x_0) = 0$$
 $(T \in \mathcal{M}_n)$ (7)

instead of (5).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

Maps preserving matrices of inner local spectral radius zero at some fixed vector

Theorem (-, 2018). Let n ≥ 2 be a natural number. Let x₀ ∈ Cⁿ be a fixed nonzero vector and let φ : M_n → M_n be a surjective additive map. Then

$$i_{\mathcal{T}}(x_0) = 0 \Longrightarrow i_{\varphi(\mathcal{T})}(x_0) = 0 \qquad (\mathcal{T} \in \mathcal{M}_n) \qquad (5)$$

if and only if there exist a nonzero c, a field automorphism $\eta : \mathbf{C} \to \mathbf{C}$, an invertible matrix $A \in \mathcal{M}_n$ satisfying $A(x_0^{\eta}) = x_0$ and a vector $f \in \mathbf{C}^n$ satisfying $f^t x_0 \neq 1$ such that $\varphi(T) = cA(T - x_0 f^t T)^{\eta} A^{-1}$ $(T \in \mathcal{M}_n)$. (6)

We arrive at the same conclusion by supposing

$$i_{\varphi(T)}(x_0) = 0 \Rightarrow i_T(x_0) = 0$$
 $(T \in \mathcal{M}_n)$ (7)

instead of (5).

The automatic continuity problem: revisited Preservers of inner/outer local spectral radius Maps preserving matrices of local spectral radius zero at some fixed Additive maps preserving matrices of inner local spectral radius zero

▲ 同 ▶ → 三 ▶

Bibliography

• A. Bourhim and J. Mashreghi, *A survey on preservers of spectra and local spectra*, in Contemporary Mathematics Volume 638 (2015), 45–98.

・ 同・ ・ ヨ・

- A. Bourhim and J. Mashreghi, *A survey on preservers of spectra and local spectra*, in Contemporary Mathematics Volume 638 (2015), 45–98.
- C. Costara, Automatic continuity for linear surjective mappings decreasing the local spectral radius at some fixed vector, Arch. Math., **95**, No. 6, (2010) 567-573.

< ロ > < 同 > < 回 > < 回 >

- A. Bourhim and J. Mashreghi, *A survey on preservers of spectra and local spectra*, in Contemporary Mathematics Volume 638 (2015), 45–98.
- C. Costara, Automatic continuity for linear surjective mappings decreasing the local spectral radius at some fixed vector, Arch. Math., **95**, No. 6, (2010) 567-573.
- C. Costara, *Linear maps preserving operators of local spectral radius zero*, Integral Equations and Operator Theory, **73**, No. 1, (2012) 7-16.

< ロ > < 同 > < 回 > < 回 >

- A. Bourhim and J. Mashreghi, *A survey on preservers of spectra and local spectra*, in Contemporary Mathematics Volume 638 (2015), 45–98.
- C. Costara, Automatic continuity for linear surjective mappings decreasing the local spectral radius at some fixed vector, Arch. Math., **95**, No. 6, (2010) 567-573.
- C. Costara, *Linear maps preserving operators of local spectral radius zero*, Integral Equations and Operator Theory, **73**, No. 1, (2012) 7-16.

- ∢ ≣ ▶

< 67 ▶

Bibliography

 C. Costara, Automatic continuity for linear surjective maps compressing the local spectrum at fixed vectors, Proc. Amer. Math. Soc., 145, No. 5, (2017) 2081–2087.

▲ □ ▶ ▲ □ ▶ ▲

- C. Costara, Automatic continuity for linear surjective maps compressing the local spectrum at fixed vectors, Proc. Amer. Math. Soc., **145**, No. 5, (2017) 2081–2087.
- C. Costara, *Linear surjective maps preserving at least one element from the local spectrum*, Proc. of the Edinburgh Mathematical Society, **61**, Issue 1 (2018), p. 169-175

- 4 同 ト 4 ヨ ト 4 ヨ ト

- C. Costara, Automatic continuity for linear surjective maps compressing the local spectrum at fixed vectors, Proc. Amer. Math. Soc., **145**, No. 5, (2017) 2081–2087.
- C. Costara, *Linear surjective maps preserving at least one element from the local spectrum*, Proc. of the Edinburgh Mathematical Society, **61**, Issue 1 (2018), p. 169-175
- A. Bourhim and C. Costara, *Linear maps preserving matrices* of *local spectral radius zero*, to appear in Canadian Journal of Math.

・ロト ・同ト ・ヨト ・ヨト

- C. Costara, Automatic continuity for linear surjective maps compressing the local spectrum at fixed vectors, Proc. Amer. Math. Soc., **145**, No. 5, (2017) 2081–2087.
- C. Costara, *Linear surjective maps preserving at least one element from the local spectrum*, Proc. of the Edinburgh Mathematical Society, **61**, Issue 1 (2018), p. 169-175
- A. Bourhim and C. Costara, *Linear maps preserving matrices* of local spectral radius zero, to appear in Canadian Journal of Math.
- C. Costara, Additive maps preserving matrices of inner local spectral radius zero at some fixed vector, preprint.

・ロト ・同ト ・ヨト ・ヨト

- C. Costara, Automatic continuity for linear surjective maps compressing the local spectrum at fixed vectors, Proc. Amer. Math. Soc., **145**, No. 5, (2017) 2081–2087.
- C. Costara, *Linear surjective maps preserving at least one element from the local spectrum*, Proc. of the Edinburgh Mathematical Society, **61**, Issue 1 (2018), p. 169-175
- A. Bourhim and C. Costara, *Linear maps preserving matrices* of local spectral radius zero, to appear in Canadian Journal of Math.
- C. Costara, Additive maps preserving matrices of inner local spectral radius zero at some fixed vector, preprint.

Thank You!

C. Costara On local spectra preserver problems

э

< ∃ →

< 🗇 🕨 < 🖻 🕨