Boundary behaviour of optimal polynomial approximants

Catherine Bénéteau

University of South Florida

Laval University, in honour of Tom Ransford, May 2018

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

This talk is based on some recent and upcoming papers with various combinations of co-authors, including Dmitry Khavinson, Conni Liaw,Myrto Manolaki, Daniel Seco, and Brian Simanek.

A & Y E & Y E &

 299

Outline

[Introduction to optimal polynomial approximants](#page-5-0)

Catherine Bénéteau [Boundary behaviour of optimal polynomial approximants](#page-0-0)

and and

す 何 ト す ヨ ト す ヨ ト

 299

∍

Outline

[Introduction to optimal polynomial approximants](#page-5-0)

[Side trip to Jentzsch's Theorem](#page-32-0)

Catherine Bénéteau [Boundary behaviour of optimal polynomial approximants](#page-0-0)

4 17 18

∢ 何 ▶ ((手) (く手)

 QQ

∍

Outline

[Introduction to optimal polynomial approximants](#page-5-0)

[Side trip to Jentzsch's Theorem](#page-32-0)

[Boundary convergence for opa of polynomials](#page-42-0)

 2990

医骨盆 医骨

Definition of Dirichlet spaces D_{α}

For $-\infty < \alpha < \infty$, the space D_{α} consists of all analytic functions $f: \mathbb{D} = \{z \in \mathbb{C}: |z| < 1\} \to \mathbb{C}$ whose Taylor coefficients in the expansion

$$
f(z)=\sum_{k=0}^{\infty}a_kz^k, \quad z\in\mathbb{D},
$$

satisfy

$$
||f||_{\alpha}^2=\sum_{k=0}^{\infty}(k+1)^{\alpha}|a_k|^2<\infty.
$$

医骨盆 医骨盆

Definition of Dirichlet spaces D_{α}

For $-\infty < \alpha < \infty$, the space D_{α} consists of all analytic functions $f: \mathbb{D} = \{z \in \mathbb{C}: |z| < 1\} \to \mathbb{C}$ whose Taylor coefficients in the expansion

$$
f(z)=\sum_{k=0}^{\infty}a_kz^k, \quad z\in\mathbb{D},
$$

satisfy

$$
||f||_{\alpha}^2=\sum_{k=0}^{\infty}(k+1)^{\alpha}|a_k|^2<\infty.
$$

Given two functions $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ in D_{α} , we also have the associated inner product

$$
\langle f, g \rangle_{\alpha} = \sum_{k=0}^{\infty} (k+1)^{\alpha} a_k \overline{b_k}.
$$

Examples

 \triangleright $\alpha = -1$ corresponds to the Bergman space A^2 , consisting of functions with

$$
\int_{\mathbb{D}}|f(z)|^2dA(z)<\infty,\quad dA(z)=\frac{dxdy}{\pi},
$$

4 17 18

化重变 化重

 QQ

∍

 \triangleright $\alpha = -1$ corresponds to the Bergman space A^2 , consisting of functions with

$$
\int_{\mathbb{D}}|f(z)|^2dA(z)<\infty,\quad dA(z)=\frac{dxdy}{\pi},
$$

 $\triangleright \ \alpha = 0$: the Hardy space H^2 , consisting of functions with

$$
\sup_{0
$$

 200

 \triangleright $\alpha = -1$ corresponds to the Bergman space A^2 , consisting of functions with

$$
\int_{\mathbb{D}}|f(z)|^2dA(z)<\infty,\quad dA(z)=\frac{dxdy}{\pi},
$$

 $\triangleright \ \alpha = 0$: the Hardy space H^2 , consisting of functions with

$$
\sup_{0
$$

 $\triangleright \alpha = 1$: the (classical) Dirichlet space D of functions whose derivatives have finite area integral:

$$
\int_{\mathbb{D}}|f'(z)|^2dA(z)<\infty.
$$

Optimal polynomial approximants: opa!

Definition

Let $f \in D_{\alpha}$. We say that a polynomial p_n of degree at most *n* is an *optimal approximant* of order *n* to $1/f$ if p_n minimizes $||pf - 1||_{\alpha}$ among all polynomials p of degree at most n .

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B} is a set of \mathcal{B}

 200

Optimal polynomial approximants: opa!

Definition

Let $f \in D_{\alpha}$. We say that a polynomial p_n of degree at most *n* is an *optimal approximant* of order *n* to $1/f$ if p_n minimizes $||pf - 1||_{\alpha}$ among all polynomials p of degree at most n .

In other words, p_n is an optimal polynomial of order *n* to $1/f$ if

$$
||p_nf-1||_{\alpha}=\mathsf{dist}_{D_{\alpha}}(1,f\cdot \mathsf{Pol}_n),
$$

where Pol_n denotes the space of polynomials of degree at most n.

マーティ ミューティー

Optimal polynomial approximants: opa!

Definition

Let $f \in D_{\alpha}$. We say that a polynomial p_n of degree at most *n* is an optimal approximant of order n to $1/f$ if p_n minimizes $||pf - 1||_{\alpha}$ among all polynomials p of degree at most n .

In other words, p_n is an optimal polynomial of order *n* to $1/f$ if

$$
||p_nf-1||_{\alpha}=\mathsf{dist}_{D_{\alpha}}(1,f\cdot \mathsf{Pol}_n),
$$

where Pol_n denotes the space of polynomials of degree at most n. Note: $p_n f$ is the orthogonal projection of 1 onto the subspace $f \cdot Pol_n$.

イロ トラ 相 トラ モ トラ モ トー

 200

Optimal polynomial approximants: opa!

Definition

Let $f \in D_{\alpha}$. We say that a polynomial p_n of degree at most *n* is an *optimal approximant* of order *n* to $1/f$ if p_n minimizes $||pf - 1||_{\alpha}$ among all polynomials p of degree at most n .

In other words, p_n is an optimal polynomial of order *n* to $1/f$ if

$$
||p_nf-1||_{\alpha}=\mathsf{dist}_{D_{\alpha}}(1,f\cdot \mathsf{Pol}_n),
$$

where Pol_n denotes the space of polynomials of degree at most n. Note: $p_n f$ is the orthogonal projection of 1 onto the subspace $f \cdot$ Pol_n. Therefore, optimal approximants p_n always exist and are unique for any nonzero function f, and any degree $n \geq 0$.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Initial motivation for studying opa - Cyclicity

A function $f \in D_{\alpha}$ is said to be cyclic in D_{α} if the subspace generated by polynomials multiples of f ,

$$
[f]=\overline{\operatorname{span}\{z^k f\colon k=0,1,2,\ldots\}}
$$

coincides with D_{α} .

Initial motivation for studying opa - Cyclicity

A function $f \in D_{\alpha}$ is said to be cyclic in D_{α} if the subspace generated by polynomials multiples of f ,

$$
[f]=\overline{\operatorname{span}\{z^k f\colon k=0,1,2,\ldots\}}
$$

coincides with D_{α} .

Equivalently: there exists a sequence of polynomials $\{p_n\}_{n=1}^\infty$ such that

$$
||p_nf-1||^2_{\alpha}\to 0, \quad \text{as } n\to\infty.
$$

Initial motivation for studying opa - Cyclicity

A function $f \in D_{\alpha}$ is said to be cyclic in D_{α} if the subspace generated by polynomials multiples of f ,

$$
[f]=\overline{\operatorname{span}\{z^k f\colon k=0,1,2,\ldots\}}
$$

coincides with D_{α} .

Equivalently: there exists a sequence of polynomials $\{p_n\}_{n=1}^\infty$ such that

$$
||p_nf-1||^2_{\alpha}\to 0, \quad \text{as } n\to\infty.
$$

The optimal polynomial approximants are the "best" such p_n .

イロメ イタメ イモメイモメー

How to compute the optimal approximants?

Let $\{\varphi_k f\}_{k=0}^n$ be an orthonormal basis for the space $f \cdot \mathsf{Pol}_n$, where the degree of φ_k is k.

 299

How to compute the optimal approximants?

Let $\{\varphi_k f\}_{k=0}^n$ be an orthonormal basis for the space $f \cdot \mathsf{Pol}_n$, where the degree of φ_k is k.

Then $p_n f$ can be expressed by its Fourier coefficients in the basis $\varphi_k f$ as follows:

オート オート オート

How to compute the optimal approximants?

Let $\{\varphi_k f\}_{k=0}^n$ be an orthonormal basis for the space $f \cdot \mathsf{Pol}_n$, where the degree of φ_k is k.

Then $p_n f$ can be expressed by its Fourier coefficients in the basis $\varphi_k f$ as follows:

$$
(\rho_n f)(z) = \sum_{k=0}^n \langle 1, \varphi_k f \rangle_\alpha \varphi_k(z) f(z).
$$

オート オート オート

How to compute the optimal approximants?

Let $\{\varphi_k f\}_{k=0}^n$ be an orthonormal basis for the space $f \cdot \mathsf{Pol}_n$, where the degree of φ_k is k.

Then $p_n f$ can be expressed by its Fourier coefficients in the basis $\varphi_k f$ as follows:

$$
(\rho_n f)(z) = \sum_{k=0}^n \langle 1, \varphi_k f \rangle_\alpha \varphi_k(z) f(z).
$$

$$
p_n(z)=\sum_{k=0}^n\langle 1,\varphi_k f\rangle_\alpha\varphi_k(z).
$$

Now notice that in all the D_{α} spaces,

$$
\langle 1, \varphi_k f \rangle_\alpha = \overline{\varphi_k(0) f(0)}.
$$

Formula for the Optimal Approximants

We thus have the following formula:

Proposition

Let $\alpha \in \mathbb{R}$ and $f \in D_{\alpha}$. For integers $k \geq 0$, let φ_k be the orthonormal polynomials for the weighted space $D_{\alpha,f}.$ Let p_n be the optimal approximants to $1/f$. Then

$$
p_n(z) = \overline{f(0)} \sum_{k=0}^n \overline{\varphi_k(0)} \varphi_k(z).
$$

Connection with reproducing kernels

The fact that

$$
p_n(z) = \overline{f(0)} \sum_{k=0}^n \overline{\varphi_k(0)} \varphi_k(z)
$$

might remind you of reproducing kernels!

 \sim $-$

 QQ

医骨盆 医骨

Connection with reproducing kernels

The fact that

$$
p_n(z) = \overline{f(0)} \sum_{k=0}^n \overline{\varphi_k(0)} \varphi_k(z)
$$

might remind you of reproducing kernels! Indeed,

$$
K_n(z,w):=\sum_{k=0}^n\overline{\varphi_k(w)f(w)}\varphi_k(z)f(z)
$$

is the reproducing kernel for the space $f \cdot \text{Pol}_n$.

Connection with reproducing kernels

The fact that

$$
p_n(z) = \overline{f(0)} \sum_{k=0}^n \overline{\varphi_k(0)} \varphi_k(z)
$$

might remind you of reproducing kernels! Indeed,

$$
K_n(z,w):=\sum_{k=0}^n\overline{\varphi_k(w)f(w)}\varphi_k(z)f(z)
$$

is the reproducing kernel for the space $f \cdot \text{Pol}_n$. Recall that K_n is characterized by: for every $g \in f \cdot \text{Pol}_n$,

$$
g(w)=\langle g, K(\cdot, w)\rangle_{\alpha}, \quad w\in \mathbb{D}.
$$

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

Connection with reproducing kernels

The fact that

$$
p_n(z) = \overline{f(0)} \sum_{k=0}^n \overline{\varphi_k(0)} \varphi_k(z)
$$

might remind you of reproducing kernels! Indeed,

$$
K_n(z,w):=\sum_{k=0}^n\overline{\varphi_k(w)f(w)}\varphi_k(z)f(z)
$$

is the reproducing kernel for the space $f \cdot \text{Pol}_n$. Recall that K_n is characterized by: for every $g \in f \cdot \text{Pol}_n$,

$$
g(w)=\langle g, K(\cdot, w)\rangle_{\alpha}, \quad w\in \mathbb{D}.
$$

Therefore, $K_n(z, 0) = p_n(z)f(z)$.

Connection with reproducing kernels

The fact that

$$
p_n(z) = \overline{f(0)} \sum_{k=0}^n \overline{\varphi_k(0)} \varphi_k(z)
$$

might remind you of reproducing kernels! Indeed,

$$
K_n(z,w):=\sum_{k=0}^n\overline{\varphi_k(w)f(w)}\varphi_k(z)f(z)
$$

is the reproducing kernel for the space $f \cdot \text{Pol}_n$. Recall that K_n is characterized by: for every $g \in f \cdot \text{Pol}_n$,

$$
g(w)=\langle g, K(\cdot, w)\rangle_{\alpha}, \quad w\in \mathbb{D}.
$$

Therefore, $K_n(z, 0) = p_n(z) f(z)$. This means that results about the behaviour of optimal approximants are actually results about the behaviour of weighted reproducing kerne[ls!](#page-25-0)

 000

Main Question of ongoing research discussed in this talk

Catherine Bénéteau [Boundary behaviour of optimal polynomial approximants](#page-0-0)

 QQ

The South Trees

Given $f\in D_\alpha$ and given $e^{i\theta}\in \mathbb{T},$ what can we say about the limit points of $p_n(e^{i\theta})$ as *n* varies?

Given $f\in D_\alpha$ and given $e^{i\theta}\in \mathbb{T},$ what can we say about the limit points of $p_n(e^{i\theta})$ as *n* varies?

$$
\blacktriangleright \text{ Does } p_n(e^{i\theta}) \to 1/f(e^{i\theta})?
$$

Given $f\in D_\alpha$ and given $e^{i\theta}\in \mathbb{T},$ what can we say about the limit points of $p_n(e^{i\theta})$ as *n* varies?

$$
\blacktriangleright \text{ Does } p_n(e^{i\theta}) \to 1/f(e^{i\theta})?
$$

 \triangleright Can there be more than one limit point?

Given $f\in D_\alpha$ and given $e^{i\theta}\in \mathbb{T},$ what can we say about the limit points of $p_n(e^{i\theta})$ as *n* varies?

- Does $p_n(e^{i\theta}) \rightarrow 1/f(e^{i\theta})$?
- \triangleright Can there be more than one limit point?
- ▶ Can it happen that the set $\{p_n(e^{i\theta}) : n = 0, 1, 2, ...\}$ is dense in C?

Let
$$
f(z) = 1/(1 - z)
$$
.

 QQ

Let $f(z) = 1/(1 - z)$. The Taylor polynomials of f are

$$
P_n(z) = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}.
$$

Let $f(z) = 1/(1 - z)$. The Taylor polynomials of f are

$$
P_n(z) = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}.
$$

Their zeros are the roots of unity (except for $z = 1$), which are dense in the unit circle T.

Let $f(z) = 1/(1 - z)$. The Taylor polynomials of f are

$$
P_n(z) = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}.
$$

Their zeros are the roots of unity (except for $z = 1$), which are dense in the unit circle T.

It turns out that this phenomenon is quite general and was discovered by Robert Jentzsch in his Ph.D. thesis in Berlin in 1914.

Jentzsch Theorem

Theorem (Jentzsch, 1914) Given any power series

$$
f(z) = \sum_{k=0}^{\infty} a_k z^k
$$

with radius of convergence 1, every point on the unit circle is a limit point of the zeros of the partial sums of the series.

Historical Notes

Robert Jentzsch was a talented mathematician born in Königsberg in 1890. He was a student of Georg Frobenius in Berlin. He was also a poet. He was killed in battle in 1918.

There is a nice historical

article "Jentzsch, Mathematician and Poet" by P. Duren, A.K. Herbig, and D. Khavinson in the Mathematical Intelligencer in 2008.

Theorem (BKLSS, 2016)

Let $\alpha \in \mathbb{R}$ and let $f \in D_{\alpha}$ be cyclic, such that $1/f$ has a singularity on the unit circle, and $f(0) \neq 0$. Then every point on the unit circle is a limit point of the zeros of the optimal approximants of $1/f$.

Theorem (BKLSS, 2016)

Let $\alpha \in \mathbb{R}$ and let $f \in D_{\alpha}$ be cyclic, such that $1/f$ has a singularity on the unit circle, and $f(0) \neq 0$. Then every point on the unit circle is a limit point of the zeros of the optimal approximants of $1/f$.

Moral of the story: Strange things happen for optimal polynomial approximants outside the unit disk.

Theorem (BKLSS, 2016)

Let $\alpha \in \mathbb{R}$ and let $f \in D_{\alpha}$ be cyclic, such that $1/f$ has a singularity on the unit circle, and $f(0) \neq 0$. Then every point on the unit circle is a limit point of the zeros of the optimal approximants of $1/f$.

Moral of the story: Strange things happen for optimal polynomial approximants *outside* the unit disk. *Inside* the unit disk, the optimal approximants converge to $1/f$, if f is cyclic.

Theorem (BKLSS, 2016)

Let $\alpha \in \mathbb{R}$ and let $f \in D_{\alpha}$ be cyclic, such that $1/f$ has a singularity on the unit circle, and $f(0) \neq 0$. Then every point on the unit circle is a limit point of the zeros of the optimal approximants of $1/f$.

Moral of the story: Strange things happen for optimal polynomial approximants *outside* the unit disk. *Inside* the unit disk, the optimal approximants converge to $1/f$, if f is cyclic. So what happens on the circle?

Theorem (C.B., M. Manolaki, D. Seco, 2018)

Let f be a monic polynomial of degree d with distinct zeros $z_1, z_2, \ldots z_d$ that lie on or outside the unit disk. For each n, let p_n be the optimal approximant of $1/f$ in D_{α} . Write $\omega_k := (k+1)^{\alpha}$ and denote by $d_{k,n}$ the Taylor coefficients of $p_n f - 1$. Then there exists a vector $A_n = (A_{1,n},...,A_{d,n})^t$ independent of k, such that for $k = 0, ..., n + d$, we have

$$
d_{k,n}=\frac{1}{\omega_k}\sum_{i=1}^d A_{i,n}\overline{z_i^k}.
$$

Theorem (continued...)

Moreover A_n is the only solution to the linear system

$$
E_{Z,n}A_n = (-1,-1,\ldots,-1)^t,
$$

where the matrix $E_{Z,n}$ is invertible and has coefficients

$$
E_{Z,n,l,m} = \sum_{k=0}^{n+d} \frac{\overline{z_m}^k z_l^k}{\omega_k}.
$$

STEP AT LAND

Idea of the proof

The proof is based on the idea that since p_nf is the projection of 1 onto f \cdot Pol_n, $p_n f - 1$ is orthogonal to $z^t f$ for $t = 0, \ldots, n$.

 2990

STEP AT LAND

Idea of the proof

The proof is based on the idea that since p_nf is the projection of 1 onto f \cdot Pol_n, $p_n f - 1$ is orthogonal to $z^t f$ for $t = 0, \ldots, n$. This orthogonality relation can be translated to the coefficients $d_{k,n}$ satisfying a recursion relation involving the coefficients of f.

Idea of the proof

The proof is based on the idea that since p_nf is the projection of 1 onto f \cdot Pol_n, $p_n f - 1$ is orthogonal to $z^t f$ for $t = 0, \ldots, n$. This orthogonality relation can be translated to the coefficients $d_{k,n}$ satisfying a recursion relation involving the coefficients of f. Then you can use an elementary linear algebra lemma describing sequences that satisfy constant term recursive relationships.

Lemma

Let a sequence $\{e_k\}_{k\in\mathbb{N}}$ satisfy the recurrence relation (for $k \geq d$)

$$
\sum_{r=0}^d e_{k-r} \hat{q}(r) = 0,
$$

where q is a polynomial q of degree d satisfying $q(0) = 1$, with simple zeros $\{w_1, ..., w_d\} \subset \mathbb{C}$. Then, there exist some constants $H_1, ..., H_d \in \mathbb{C}$ such that, for all k, e_k is given by

$$
e_k=\sum_{i=1}^d H_i w_i^{-k}.
$$

K 何 ▶ K 后 ▶ K 后 ▶ .

For $f(z) = 1-z$, p_n the n^{th} o.p.a. of $1/f$ in H^2 , and for $z \neq 1$, we have:

4日)

∢ 何 ▶ (ヨ ▶ (ヨ ▶

 QQ

∍

For
$$
f(z) = 1 - z
$$
, p_n the n^{th} o.p.a. of $1/f$ in H^2 , and for $z \neq 1$, we have:
\n
$$
z^{n+2} - (n+2)z + n + 1
$$

$$
p_n(z) = A_n(z) \frac{1}{1-z}
$$
, where $A_n(z) = \frac{z^{n+2} - (n+2)z + n+1}{(n+2)(1-z)}$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

目

 299

For
$$
f(z) = 1 - z
$$
, p_n the n^{th} o.p.a. of $1/f$ in H^2 , and for $z \neq 1$, we have:
\n
$$
p_n(z) = A_n(z) \frac{1}{1 - z}, \text{ where } A_n(z) = \frac{z^{n+2} - (n+2)z + n + 1}{(n+2)(1 - z)} = \frac{z^{n+2}}{n+2} \cdot \frac{1}{1 - z} - \frac{z}{1 - z} + \frac{n+1}{n+2} \cdot \frac{1}{1 - z}.
$$

メロメメ 御 メメ きょく きょう

目

 299

For $f(z) = 1-z$, p_n the n^{th} o.p.a. of $1/f$ in H^2 , and for $z \neq 1$, we have: $p_n(z) = A_n(z) \frac{1}{1-z}$, where $A_n(z) = \frac{z^{n+2} - (n+2)z + n+1}{(n+2)(1-z)}$ $1-z$ ² $(n+2)(1-z)$ z^{n+2} $rac{z^{n+2}}{n+2} \cdot \frac{1}{1-z}$ $\frac{1}{1-z} - \frac{z}{1-z}$ $\frac{z}{1-z} + \frac{n+1}{n+2}$ $\frac{n+1}{n+2} \cdot \frac{1}{1}$ $\frac{1}{1-z}$. For all z with $|z| \leq 1$ we have $\lim_{n\to\infty}$ z^{n+2} $\frac{1}{n+2} = 0;$

オート オート オート

For $f(z) = 1-z$, p_n the n^{th} o.p.a. of $1/f$ in H^2 , and for $z \neq 1$, we have: $p_n(z) = A_n(z) \frac{1}{1-z}$, where $A_n(z) = \frac{z^{n+2} - (n+2)z + n+1}{(n+2)(1-z)}$ $1-z$ ² $(n+2)(1-z)$ z^{n+2} $rac{z^{n+2}}{n+2} \cdot \frac{1}{1-z}$ $\frac{1}{1-z} - \frac{z}{1-z}$ $\frac{z}{1-z} + \frac{n+1}{n+2}$ $\frac{n+1}{n+2} \cdot \frac{1}{1}$ $\frac{1}{1-z}$. For all z with $|z| \leq 1$ we have $\lim_{n\to\infty}$ z^{n+2} $\frac{n-1}{n+2} = 0$; therefore

$$
\lim_{n \to \infty} A_n(z) = 0 - \frac{z}{1 - z} + \frac{1}{1 - z} = 1.
$$

オート オート オート

Bounded

The previous theorem can be leveraged to prove the following. Theorem (C.B., M. Manolaki, D. Seco, 2018) Let f be a polynomial of degree d with simple zeros that all lie outside the open unit disk, and let $\alpha \leq 1.$ Let p_n be the nth optimal polynomial approximant of $1/f$ in D_{α} . Let $z_0 \in \mathbb{T}$, not a zero of f. Then

$$
(p_n f - 1)(z_0) \to 0 \quad \text{as} \quad n \to \infty.
$$

Further Remarks

It turns out that this most recent result is the *first* step in showing that there are functions f for which the set $p_n(e^{i\theta})$ is dense in $\mathbb{C}!$ This is a preliminary result (C.B., M. Manolaki, D. Seco, 2018).

Further Remarks

- It turns out that this most recent result is the *first* step in showing that there are functions f for which the set $p_n(e^{i\theta})$ is dense in $\mathbb{C}!$ This is a preliminary result (C.B., M. Manolaki, D. Seco, 2018).
- \triangleright Can we describe the functions f for which this kind of universality happens? For which the opposite happens? Are there cases in between?

Thank you!

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

E

 299