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1) Basics

X is a complex Banach space with open unit ball BX . We’ll be
interested in three algebras of holomorphic functions

I Hb(X ), the (Fréchet) algebra of all entire functions
f : X → C such that ‖f ‖nBX

<∞, ∀n,

I H∞(BX ), the (Banach) algebra of all holomorphic functions
f : BX → C such that ‖f ‖ = supx∈BX

|f (x)| <∞. To a lesser
extent, we’ll look at

I Au(BX ), the subalgebra of H∞(BX ) consisting of all
uniformly continuous holomorphic functions on BX .

Let’s call any of these three algebras A, for now.
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1) Basics

X is a complex Banach space with open unit ball BX . We’ll be
interested in three algebras of holomorphic functions
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2) Basics

Let M(A) denote the set of all 6= 0 homomorphisms ϕ : A → C.

In the the case of Banach algebras, any such ϕ is automatically
continuous. However, for A = Hb(X ), the automatic continuity of
ϕ is unknown (“Michael problem”). For this talk, we’ll work only
with continuous homomorphisms ϕ. For Banach algebras A,
M(A) ⊂ BA∗ and is weak-star compact.
A few more basics later.
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2) Basics

Let M(A) denote the set of all 6= 0 homomorphisms ϕ : A → C.
In the the case of Banach algebras, any such ϕ is automatically
continuous. However, for A = Hb(X ), the automatic continuity of
ϕ is unknown (“Michael problem”).

For this talk, we’ll work only
with continuous homomorphisms ϕ. For Banach algebras A,
M(A) ⊂ BA∗ and is weak-star compact.
A few more basics later.

R. M. Aron, Kent State University Problems about Banach and Fréchet algebras of analytic functions
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2) Hb(X )

By [A & Berner], every f ∈ Hb(X ) admits an extension (via a
canonical map) to f̃ ∈ Hb(X ∗∗). Moreover, f → f̃ is itself a
homomorphism, i.e. it’s linear, multiplicative, and continuous.

By
[Davie & Gamelin], it follows that every f ∈ H∞(BX ) admits an
extension f̃ ∈ H∞(BX∗∗). The same holds for Au(BX ). As above,
f → f̃ is a homomorphism.

Examples

1. X = C : M(H(C)) = {δc | c ∈ C}.
Also M(Au(BC)) =M(A(D)) = {δc | c ∈ C, |c | ≤ 1}.

However, M(H∞(D)) is very complicated and very interesting.
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2) Hb(X )

By [A & Berner], every f ∈ Hb(X ) admits an extension (via a
canonical map) to f̃ ∈ Hb(X ∗∗). Moreover, f → f̃ is itself a
homomorphism, i.e. it’s linear, multiplicative, and continuous. By
[Davie & Gamelin], it follows that every f ∈ H∞(BX ) admits an
extension f̃ ∈ H∞(BX∗∗). The same holds for Au(BX ). As above,
f → f̃ is a homomorphism.

Examples

1. X = C : M(H(C)) = {δc | c ∈ C}.
Also M(Au(BC)) =M(A(D)) = {δc | c ∈ C, |c | ≤ 1}.

However, M(H∞(D)) is very complicated and very interesting.

R. M. Aron, Kent State University Problems about Banach and Fréchet algebras of analytic functions
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2) Hb(X )

Examples

2. X = c0 : It is known that M(Hb(c0)) consists of {δb | b ∈ c0}
together with all {δ̃b∗∗ | b∗∗ ∈ `∞}, where δ̃b∗∗(f ) = f̃ (b∗∗).
Similarly for M(Au(Bc0)), except ‖b‖, ‖b∗∗‖ ≤ 1.

3. X = `2. There are many more non-trivial homomorphisms in
M(Hb(`2)) than merely the evaluation homomorphisms
δx , x ∈ `2 :
Consider the set {δen} ⊂ M(Hb(`2)). It isn’t difficult that this set
has an accumulation point ϕ ∈M(Hb(`2)). But ϕ is not a point
evaluation homomorphism.
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2) Hb(X )

Question For a fixed b∗∗ ∈ X ∗∗, with
δ̃∗∗b : f ∈ Hb(X )→ f̃ ∈ Hb(X ∗∗)→ f̃ (b∗∗), we see that X ∗∗ can
be viewed as a subset of M(Hb(X )). Can we continue this
procedure, going from f ∈ Hb(X ) −→ f̃ ∈ Hb(X ∗∗), and then

from f̃ ∈ Hb(X ∗∗) −→ ˜̃f ∈ Hb(X iv )? In this way, for each fixed
biv ∈ X iv , can we get new homomorphisms
˜̃δbiv ∈M(Hb(X )), f  ˜̃f (biv )?

Answer: Sometimes yes, sometimes no. If X is Arens regular, e.g.
a C ∗−algebra, or if X is reflexive (trivial), then no. Namely, to

each biv ∈ X iv , there corresponds b∗∗ ∈ X ∗∗ such that ˜̃δbiv = δ̃b∗∗ .
However,
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2) Hb(X )

Example

X = `1. Theorem: There are points biv ∈ `iv1 such that ˜̃δbiv 6= δ̃b∗∗

for any b∗∗ ∈ `∗∗1 .

Problems: (1) There are more points in `iv1 than there are
homomorphisms in M(Hb(`1)). So, which points biv of the fourth
dual yield new homomorphisms and which do not?
(2) Same questions about going to the sixth dual of `1.
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1) Back to (1) Basics

As before, let A be one of the following three algebras:
Hb(X ),H∞(BX ),Au(BX ).
Observation: X ∗ ⊂ A. Consequently, for any x∗ ∈ X ∗ and for any
(continuous) homomorphism ϕ ∈M(A), ϕ(x∗) ∈ C makes sense.

Define Π : A →??? by Π(ϕ) = ϕ|X∗ .
So, what is ???. Answer: It has to be the bidual X ∗∗.
(Of course, nothing new when dim X <∞.) For A = Hb(X ), the
range of Π is all of X ∗∗, while in the other two cases,
A = H∞(BX ) or Au(BX ), the range is BX∗∗ .

Definition
Let z∗∗ be in the range of Π. The fiber over z∗∗ is just Π−1(z∗∗).
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1) Basics

Definition
The cluster set of a function f ∈ H∞(BX ) at the point z∗∗ ∈ BX∗∗

is the set of all limits of values of f along nets in BX that converge
weak-star to z∗∗.

Let’s restrict to A = H∞(D). Recall that
δ(D) ≡ {δc | c ∈ D} ⊂ M(H∞(D)).
Corona Theorem (L. Carleson - 1962) The collection δ(D) of
point evaluations at points of the open unit disc is dense in the
space of all homomorphisms M(H∞(D)) on H∞(D).
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1) Basics

Carleson’s theorem (312) appeared one year after a somewhat
overlooked paper by I. J. Schark (10). In it, among other things
I. J. Schark proved

Cluster Value Theorem (I. J. Schark - 1961) Fix f ∈ H∞(D)
and c ∈ D. Then the following sets are equal:
{w ∈ C | ∃(zn) ⊂ D, zn → c and f (zn)→ w};
{ϕ(f ) | ϕ ∈M(H∞(D)) | Π(ϕ) = c}.
Remarks 0. Schark’s result is trivial if |c| < 1.
1. Carleson’s theorem ⇒ I. J. Schark’s theorem, but : is false.
2. The analogous result to Carleson’s theorem for higher
dimensions, e.g. C2 with the Euclidean or max norms, is unknown.
Put briefly, for dim X = 1, there are no known counterexamples; for
dim X ≥ 2, there are no known positive results. On the other hand,
3. There is no known situation in which I. J. Schark’s theorem is
false.
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(3) Problems involving H∞(BX )

First, we’re interested in a cluster value theorem, à la I. J. Schark.
To start, for a given complex Banach space X , observe that
δ(BX ) ≡ {δc | c ∈ BX} ⊂ M(H∞(BX )). Also, as before, endow
M(H∞(BX )) with the weak-star topology, considering it as a
subspace of (H∞(BX )∗, weak-star).

Harder Problem: Is the Cluster Value Theorem still true? Namely,
for a fixed f ∈ H∞(BX ) and a fixed point z∗∗ ∈ BX∗∗ , are the
following two sets equal?
{w ∈ C | ∃ net (zα)α ∈ BX , zα → z∗∗ weak − ∗ & f (zα)→ w};

{ϕ(f ) | ϕ ∈M(H∞(BX )), Π(ϕ) = z∗∗}.
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To start, for a given complex Banach space X , observe that
δ(BX ) ≡ {δc | c ∈ BX} ⊂ M(H∞(BX )). Also, as before, endow
M(H∞(BX )) with the weak-star topology, considering it as a
subspace of (H∞(BX )∗, weak-star).
Harder Problem: Is the Cluster Value Theorem still true? Namely,
for a fixed f ∈ H∞(BX ) and a fixed point z∗∗ ∈ BX∗∗ , are the
following two sets equal?
{w ∈ C | ∃ net (zα)α ∈ BX , zα → z∗∗ weak − ∗ & f (zα)→ w};

{ϕ(f ) | ϕ ∈M(H∞(BX )), Π(ϕ) = z∗∗}.

R. M. Aron, Kent State University Problems about Banach and Fréchet algebras of analytic functions



(3) Problems involving H∞(BX )

Remark Unlike the case dim X <∞, the fiber over any, even an
interior point of BX∗∗ is rich. In particular, βN ⊂ Π−1(0). Even in
this case, the easier (?) problem is open in general:

Easier Problem: For a fixed f ∈ H∞(BX ), are the following two
sets equal?

{w ∈ C | ∃ net (zα)α ∈ BX , zα → 0 weakly & f (zα)→ w};

{ϕ(f ) | ϕ ∈M(H∞(BX )), Π(ϕ) = 0}.
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(3) Problems involving H∞(BX )

Yes, even to the “harder” question, if X = c0.

Theorem. Fix f ∈ H∞(Bc0) and z∗∗ ∈ B`∞ . Then the two sets

{w ∈ C | ∃ net (zα)α ∈ Bc0 , zα → z∗∗ weak − ∗ & f (zα)→ w}

and

{ϕ(f ) | ϕ ∈M(H∞(Bc0)), Π(ϕ) = z∗∗}

are equal.
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(3) Problems involving H∞(BX )

It is unknown if a similar result holds for the apparently simpler
case of X = `2.

One basic idea for proof of harder problem, X = c0. Notation: For
g ∈ H∞(Bc0) and n ∈ N, define gn ∈ H∞(Bc0) by
gn(x1, ..., xn, xn+1, ...) ≡ g(0, ..., 0, xn+1, ...).

Lemma
Fix ϕ ∈M(H(∞(Bc0))) so that Π(ϕ) = 0. For any g ∈ H∞(Bc0)
and any n ∈ N, ϕ(g) = ϕ(gn).

Remark The lemma is false if c0 is replaced by `2 (and so we’re
stuck).
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(3) Problems involving H∞(BX )

It is unknown if a similar result holds for the apparently simpler
case of X = `2.

One basic idea for proof of harder problem, X = c0. Notation: For
g ∈ H∞(Bc0) and n ∈ N, define gn ∈ H∞(Bc0) by
gn(x1, ..., xn, xn+1, ...) ≡ g(0, ..., 0, xn+1, ...).

Lemma
Fix ϕ ∈M(H(∞(Bc0))) so that Π(ϕ) = 0. For any g ∈ H∞(Bc0)
and any n ∈ N, ϕ(g) = ϕ(gn).

Remark The lemma is false if c0 is replaced by `2 (and so we’re
stuck).

R. M. Aron, Kent State University Problems about Banach and Fréchet algebras of analytic functions



(3) Problems involving H∞(BX )

Fibers Recall: For a complex Banach space X ,
Π :M(H∞(BX ))→ B

∗∗
X , Π(ϕ) ≡ ϕ|X∗ .

Fix X and two points z∗∗ and w∗∗ in BX∗∗ .
Problem What is the relation between the two fibers Π−1(z∗∗) and
Π−1(w∗∗)?

Suppose X = `2. If ‖z‖ = ‖w‖ = 1, then Π−1(z) w Π−1(w). The
same result holds if ‖z‖ and ‖w‖ are both < 1. What if
1 = ‖z‖ > ‖w‖?
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(3) Problems involving H∞(BX )

Suppose X = c0. Then ‖z‖, ‖w‖ < 1⇒ Π−1(z) w Π−1(w). But
for ‖z‖ = ‖w‖ = 1, the situation is murky.

For the special cases H∞(D) and H∞(D2), what is known is that
Π−1(1) w Π−1(a, b), if one of |a|, |b| = 1 and the other is < 1.
Also, Π−1(1) and Π−1(1, 1) are not homeomorphic.
(But the argument really uses dimension 1.)

Remark Even if dim X <∞ (so BX = BX∗∗) and even if
‖z‖, ‖w‖ < 1, the problem, of whether π−1(z) and π−1(w) are
(somehow) the “same” is apparently unknown in general.

The problem is that, in general, it isn’t known if Π−1(z) = {δz} if
dim X <∞ and ‖z‖ < 1.
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