Some Problems concerning algebras of holomorphic functions

RICHARD M. ARON KENT STATE UNIVERSITY

Complex Analysis and Spectral Theory Université Laval May, 2018

Plan of talk

Problems collected over a long period, with many co-authors: B. Cole, D. Carando, P. Galindo, D. García, T. W. Gamelin, A. Izzo, S. Lassalle, M. Maestre, ...

Plan of talk

Problems collected over a long period, with many co-authors:

- B. Cole, D. Carando, P. Galindo, D. García, T. W. Gamelin, A. Izzo, S. Lassalle, M. Maestre, ...
- 1. Basic background
- 2. A Problem involving $\mathcal{H}_b(X)$
- 3. Problems involving $\mathcal{H}^{\infty}(B_X)$

X is a complex Banach space with open unit ball B_X . We'll be interested in three algebras of holomorphic functions

X is a complex Banach space with open unit ball B_X . We'll be interested in three algebras of holomorphic functions

▶ $\mathcal{H}_b(X)$, the (Fréchet) algebra of all entire functions $f: X \to \mathbb{C}$ such that $||f||_{nB_X} < \infty, \ \forall n$,

X is a complex Banach space with open unit ball B_X . We'll be interested in three algebras of holomorphic functions

- ▶ $\mathcal{H}_b(X)$, the (Fréchet) algebra of all entire functions $f: X \to \mathbb{C}$ such that $||f||_{nB_X} < \infty, \ \forall n$,
- ▶ $\mathcal{H}^{\infty}(B_X)$, the (Banach) algebra of all holomorphic functions $f: B_X \to \mathbb{C}$ such that $\|f\| = \sup_{x \in B_X} |f(x)| < \infty$. To a lesser extent, we'll look at

X is a complex Banach space with open unit ball B_X . We'll be interested in three algebras of holomorphic functions

- ▶ $\mathcal{H}_b(X)$, the (Fréchet) algebra of all entire functions $f: X \to \mathbb{C}$ such that $||f||_{nB_X} < \infty, \ \forall n$,
- ▶ $\mathcal{H}^{\infty}(B_X)$, the (Banach) algebra of all holomorphic functions $f: B_X \to \mathbb{C}$ such that $\|f\| = \sup_{x \in B_X} |f(x)| < \infty$. To a lesser extent, we'll look at
- $ightharpoonup \mathcal{A}_u(B_X)$, the subalgebra of $\mathcal{H}^{\infty}(B_X)$ consisting of all uniformly continuous holomorphic functions on B_X .

X is a complex Banach space with open unit ball B_X . We'll be interested in three algebras of holomorphic functions

- ▶ $\mathcal{H}_b(X)$, the (Fréchet) algebra of all entire functions $f: X \to \mathbb{C}$ such that $||f||_{nB_X} < \infty, \ \forall n$,
- ▶ $\mathcal{H}^{\infty}(B_X)$, the (Banach) algebra of all holomorphic functions $f: B_X \to \mathbb{C}$ such that $\|f\| = \sup_{x \in B_X} |f(x)| < \infty$. To a lesser extent, we'll look at
- $ightharpoonup \mathcal{A}_u(B_X)$, the subalgebra of $\mathcal{H}^{\infty}(B_X)$ consisting of all uniformly continuous holomorphic functions on B_X .

Let's call any of these three algebras $\mathcal{A},$ for now.

Let $\mathcal{M}(\mathcal{A})$ denote the set of all $\neq 0$ homomorphisms $\varphi : \mathcal{A} \to \mathbb{C}$.

Let $\mathcal{M}(\mathcal{A})$ denote the set of all $\neq 0$ homomorphisms $\varphi: \mathcal{A} \to \mathbb{C}$. In the the case of *Banach algebras*, any such φ is automatically continuous. However, for $\mathcal{A} = \mathcal{H}_b(X)$, the automatic continuity of φ is unknown ("Michael problem").

Let $\mathcal{M}(\mathcal{A})$ denote the set of all \neq 0 homomorphisms $\varphi: \mathcal{A} \to \mathbb{C}$. In the the case of *Banach algebras*, any such φ is automatically continuous. However, for $\mathcal{A} = \mathcal{H}_b(X)$, the automatic continuity of φ is unknown ("Michael problem"). For this talk, we'll work only with continuous homomorphisms φ .

Let $\mathcal{M}(\mathcal{A})$ denote the set of all $\neq 0$ homomorphisms $\varphi: \mathcal{A} \to \mathbb{C}$. In the the case of *Banach algebras*, any such φ is automatically continuous. However, for $\mathcal{A} = \mathcal{H}_b(X)$, the automatic continuity of φ is unknown ("Michael problem"). For this talk, we'll work only with continuous homomorphisms φ . For Banach algebras \mathcal{A} , $\mathcal{M}(\mathcal{A}) \subset \overline{B}_{\mathcal{A}^*}$ and is weak-star compact.

Let $\mathcal{M}(\mathcal{A})$ denote the set of all $\neq 0$ homomorphisms $\varphi: \mathcal{A} \to \mathbb{C}$. In the the case of *Banach algebras*, any such φ is automatically continuous. However, for $\mathcal{A} = \mathcal{H}_b(X)$, the automatic continuity of φ is unknown ("Michael problem"). For this talk, we'll work only with continuous homomorphisms φ . For Banach algebras \mathcal{A} , $\mathcal{M}(\mathcal{A}) \subset \overline{B}_{\mathcal{A}^*}$ and is weak-star compact. A few more basics later.

By [A & Berner], every $f \in \mathcal{H}_b(X)$ admits an extension (via a canonical map) to $\tilde{f} \in \mathcal{H}_b(X^{**})$. Moreover, $f \to \tilde{f}$ is itself a homomorphism, i.e. it's linear, multiplicative, and continuous.

By [A & Berner], every $f \in \mathcal{H}_b(X)$ admits an extension (via a canonical map) to $\tilde{f} \in \mathcal{H}_b(X^{**})$. Moreover, $f \to \tilde{f}$ is itself a homomorphism, i.e. it's linear, multiplicative, and continuous. By [Davie & Gamelin], it follows that every $f \in \mathcal{H}^\infty(B_X)$ admits an extension $\tilde{f} \in \mathcal{H}^\infty(B_{X^{**}})$. The same holds for $\mathcal{A}_u(B_X)$. As above, $f \to \tilde{f}$ is a homomorphism.

By [A & Berner], every $f \in \mathcal{H}_b(X)$ admits an extension (via a canonical map) to $\tilde{f} \in \mathcal{H}_b(X^{**})$. Moreover, $f \to \tilde{f}$ is itself a homomorphism, i.e. it's linear, multiplicative, and continuous. By [Davie & Gamelin], it follows that every $f \in \mathcal{H}^\infty(B_X)$ admits an extension $\tilde{f} \in \mathcal{H}^\infty(B_{X^{**}})$. The same holds for $\mathcal{A}_u(B_X)$. As above, $f \to \tilde{f}$ is a homomorphism.

Examples

1.
$$X = \mathbb{C}$$
: $\mathcal{M}(\mathcal{H}(\mathbb{C})) = \{\delta_c \mid c \in \mathbb{C}\}.$
Also $\mathcal{M}(\mathcal{A}_u(\mathcal{B}_{\mathbb{C}})) = \mathcal{M}(\mathcal{A}(\mathbb{D})) = \{\delta_c \mid c \in \mathbb{C}, |c| \leq 1\}.$

However, $\mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))$ is very complicated and very interesting.

Examples

2. $X=c_0$: It is known that $\mathcal{M}(\mathcal{H}_b(c_0))$ consists of $\{\delta_b \mid b \in c_0\}$ together with all $\{\tilde{\delta}_{b^{**}} \mid b^{**} \in \ell_\infty\}$, where $\tilde{\delta}_{b^{**}}(f) = \tilde{f}(b^{**})$. Similarly for $\mathcal{M}(\mathcal{A}_u(B_{c_0}))$, except $\|b\|, \|b^{**}\| \leq 1$.

Examples

- 2. $X = c_0$: It is known that $\mathcal{M}(\mathcal{H}_b(c_0))$ consists of $\{\delta_b \mid b \in c_0\}$ together with all $\{\tilde{\delta}_{b^{**}} \mid b^{**} \in \ell_\infty\}$, where $\tilde{\delta}_{b^{**}}(f) = \tilde{f}(b^{**})$. Similarly for $\mathcal{M}(\mathcal{A}_u(B_{c_0}))$, except $\|b\|, \|b^{**}\| \leq 1$.
- 3. $X=\ell_2$. There are many more non-trivial homomorphisms in $\mathcal{M}(\mathcal{H}_b(\ell_2))$ than merely the evaluation homomorphisms $\delta_x, x \in \ell_2$:

Examples

- 2. $X=c_0$: It is known that $\mathcal{M}(\mathcal{H}_b(c_0))$ consists of $\{\delta_b \mid b \in c_0\}$ together with all $\{\tilde{\delta}_{b^{**}} \mid b^{**} \in \ell_\infty\}$, where $\tilde{\delta}_{b^{**}}(f) = \tilde{f}(b^{**})$. Similarly for $\mathcal{M}(\mathcal{A}_u(B_{c_0}))$, except $\|b\|, \|b^{**}\| \leq 1$.
- 3. $X=\ell_2$. There are many more non-trivial homomorphisms in $\mathcal{M}(\mathcal{H}_b(\ell_2))$ than merely the evaluation homomorphisms $\delta_x, x \in \ell_2$:

Consider the set $\{\delta_{e_n}\}\subset \mathcal{M}(\mathcal{H}_b(\ell_2))$. It isn't difficult that this set has an accumulation point $\varphi\in \mathcal{M}(\mathcal{H}_b(\ell_2))$. But φ is not a point evaluation homomorphism.

Question For a fixed $b^{**} \in X^{**}$, with $\tilde{\delta}_b^{**}: f \in \mathcal{H}_b(X) \to \tilde{f} \in \mathcal{H}_b(X^{**}) \to \tilde{f}(b^{**})$, we see that X^{**} can be viewed as a subset of $\mathcal{M}(\mathcal{H}_b(X))$. Can we continue this procedure, going from $f \in \mathcal{H}_b(X) \longrightarrow \tilde{f} \in \mathcal{H}_b(X^{**})$, and then from $\tilde{f} \in \mathcal{H}_b(X^{**}) \longrightarrow \tilde{\tilde{f}} \in \mathcal{H}_b(X^{iv})$? In this way, for each fixed $b^{iv} \in X^{iv}$, can we get new homomorphisms $\tilde{\tilde{\delta}}_{b^{iv}} \in \mathcal{M}(\mathcal{H}_b(X)), \quad f \leadsto \tilde{\tilde{f}}(b^{iv})$?

Question For a fixed $b^{**} \in X^{**}$, with $\tilde{\delta}_b^{**}: f \in \mathcal{H}_b(X) \to \tilde{f} \in \mathcal{H}_b(X^{**}) \to \tilde{f}(b^{**})$, we see that X^{**} can be viewed as a subset of $\mathcal{M}(\mathcal{H}_b(X))$. Can we continue this procedure, going from $f \in \mathcal{H}_b(X) \to \tilde{f} \in \mathcal{H}_b(X^{**})$, and then from $\tilde{f} \in \mathcal{H}_b(X^{**}) \to \tilde{\tilde{f}} \in \mathcal{H}_b(X^{iv})$? In this way, for each fixed $b^{iv} \in X^{iv}$, can we get new homomorphisms $\tilde{\delta}_{b^{iv}} \in \mathcal{M}(\mathcal{H}_b(X)), \quad f \leadsto \tilde{\tilde{f}}(b^{iv})$? Answer: Sometimes yes, sometimes no. If X is $Arens\ regular$, e.g. a C^* -algebra, or if X is reflexive (trivial), then no.

Question For a fixed $b^{**} \in X^{**}$. with $\tilde{\delta}_b^{**}: f \in \mathcal{H}_b(X) \to \tilde{f} \in \mathcal{H}_b(X^{**}) \to \tilde{f}(b^{**}),$ we see that X^{**} can be viewed as a subset of $\mathcal{M}(\mathcal{H}_b(X))$. Can we continue this procedure, going from $f \in \mathcal{H}_b(X) \longrightarrow \tilde{f} \in \mathcal{H}_b(X^{**})$, and then from $\tilde{f} \in \mathcal{H}_b(X^{**}) \longrightarrow \tilde{f} \in \mathcal{H}_b(X^{iv})$? In this way, for each fixed $b^{iv} \in X^{iv}$, can we get *new* homomorphisms $\tilde{\tilde{\delta}}_{\scriptscriptstyle Liv} \in \mathcal{M}(\mathcal{H}_{\scriptscriptstyle B}(X)), \ \ f \leadsto \tilde{\tilde{f}}(b^{iv})?$ Answer: Sometimes yes, sometimes no. If X is Arens regular, e.g. a C^* -algebra, or if X is reflexive (trivial), then no. Namely, to each $b^{iv} \in X^{iv}$, there corresponds $b^{**} \in X^{**}$ such that $\tilde{\tilde{\delta}}_{h^{iv}} = \tilde{\delta}_{h^{**}}$. However.

Example

 $X=\ell_1.$ **Theorem**: There are points $b^{iv}\in\ell_1^{iv}$ such that $\tilde{\tilde{\delta}}_{b^{iv}}
eq \tilde{\delta}_{b^{**}}$ for any $b^{**}\in\ell_1^{**}$.

Example

 $X=\ell_1.$ Theorem: There are points $b^{iv}\in\ell_1^{iv}$ such that $\tilde{\tilde{\delta}}_{b^{iv}}
eq \tilde{\delta}_{b^{**}}$ for any $b^{**}\in\ell_1^{**}$.

Problems: (1) There are *more points* in ℓ_1^{iv} than there are homomorphisms in $\mathcal{M}(\mathcal{H}_b(\ell_1))$. So, which points b^{iv} of the fourth dual yield new homomorphisms and which do not?

Example

 $X=\ell_1.$ Theorem: There are points $b^{iv}\in\ell_1^{iv}$ such that $\tilde{\tilde{\delta}}_{b^{iv}}
eq \tilde{\delta}_{b^{**}}$ for any $b^{**}\in\ell_1^{**}$.

Problems: (1) There are *more points* in $\ell_1^{i\nu}$ than there are homomorphisms in $\mathcal{M}(\mathcal{H}_b(\ell_1))$. So, which points $b^{i\nu}$ of the fourth dual yield new homomorphisms and which do not?

(2) Same questions about going to the sixth dual of ℓ_1 .

As before, let A be one of the following three algebras:

 $\mathcal{H}_b(X), \mathcal{H}^{\infty}(B_X), \mathcal{A}_u(B_X).$

Observation: $X^* \subset \mathcal{A}$. Consequently, for any $x^* \in X^*$ and for any (continuous) homomorphism $\varphi \in \mathcal{M}(\mathcal{A}), \ \varphi(x^*) \in \mathbb{C}$ makes sense.

As before, let $\mathcal A$ be one of the following three algebras:

 $\mathcal{H}_b(X), \mathcal{H}^{\infty}(B_X), \mathcal{A}_u(B_X).$

Observation: $X^* \subset \mathcal{A}$. Consequently, for any $x^* \in X^*$ and for any (continuous) homomorphism $\varphi \in \mathcal{M}(\mathcal{A}), \ \varphi(x^*) \in \mathbb{C}$ makes sense.

Define $\Pi: \mathcal{A} \to ???$ by $\Pi(\varphi) = \varphi|_{X^*}$.

So, what is ???. Answer: It has to be the bidual X^{**} .

As before, let \mathcal{A} be one of the following three algebras:

$$\mathcal{H}_b(X), \mathcal{H}^{\infty}(B_X), \mathcal{A}_u(B_X).$$

Observation: $X^* \subset \mathcal{A}$. Consequently, for any $x^* \in X^*$ and for any (continuous) homomorphism $\varphi \in \mathcal{M}(\mathcal{A}), \ \varphi(x^*) \in \mathbb{C}$ makes sense.

Define $\Pi: \mathcal{A} \to ???$ by $\Pi(\varphi) = \varphi|_{X^*}$.

So, what is ???. Answer: It has to be the bidual X^{**} .

(Of course, nothing new when dim $X < \infty$.) For $A = \mathcal{H}_b(X)$, the range of Π is all of X^{**} , while in the other two cases,

$$\mathcal{A} = \mathcal{H}^{\infty}(B_X)$$
 or $\mathcal{A}_u(B_X)$, the range is $\overline{B}_{X^{**}}$.

As before, let ${\cal A}$ be one of the following three algebras:

$$\mathcal{H}_b(X), \mathcal{H}^{\infty}(B_X), \mathcal{A}_u(B_X).$$

Observation: $X^* \subset \mathcal{A}$. Consequently, for any $x^* \in X^*$ and for any (continuous) homomorphism $\varphi \in \mathcal{M}(\mathcal{A}), \ \varphi(x^*) \in \mathbb{C}$ makes sense.

Define
$$\Pi: \mathcal{A} \to ???$$
 by $\Pi(\varphi) = \varphi|_{X^*}$.

So, what is ???. Answer: It has to be the bidual X^{**} .

(Of course, nothing new when dim $X < \infty$.) For $\mathcal{A} = \mathcal{H}_b(X)$, the range of Π is all of X^{**} , while in the other two cases,

$$\mathcal{A} = \mathcal{H}^{\infty}(B_X)$$
 or $\mathcal{A}_u(B_X)$, the range is $\overline{B}_{X^{**}}$.

Definition

Let z^{**} be in the range of Π . The *fiber* over z^{**} is just $\Pi^{-1}(z^{**})$.

Definition

The *cluster set* of a function $f \in \mathcal{H}^{\infty}(B_X)$ at the point $z^{**} \in \overline{B}_{X^{**}}$ is the set of all limits of values of f along nets in B_X that converge weak-star to z^{**} .

Definition

The *cluster set* of a function $f \in \mathcal{H}^{\infty}(B_X)$ at the point $z^{**} \in \overline{B}_{X^{**}}$ is the set of all limits of values of f along nets in B_X that converge weak-star to z^{**} .

Let's restrict to $\mathcal{A}=\mathcal{H}^\infty(\mathbb{D})$. Recall that $\delta(\mathbb{D})\equiv\{\delta_c\mid c\in\mathbb{D}\}\subset\mathcal{M}(\mathcal{H}^\infty(\mathbb{D})).$

Definition

The *cluster set* of a function $f \in \mathcal{H}^{\infty}(B_X)$ at the point $z^{**} \in \overline{B}_{X^{**}}$ is the set of all limits of values of f along nets in B_X that converge weak-star to z^{**} .

Let's restrict to $\mathcal{A}=\mathcal{H}^\infty(\mathbb{D})$. Recall that $\delta(\mathbb{D})\equiv\{\delta_c\mid c\in\mathbb{D}\}\subset\mathcal{M}(\mathcal{H}^\infty(\mathbb{D})).$

Corona Theorem (L. Carleson - 1962) The collection $\delta(\mathbb{D})$ of point evaluations at points of the open unit disc is dense in the space of all homomorphisms $\mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D}))$ on $\mathcal{H}^{\infty}(\mathbb{D})$.

Carleson's theorem (312) appeared one year after a somewhat overlooked paper by I. J. Schark (10). In it, among other things I. J. Schark proved

Carleson's theorem (312) appeared one year after a somewhat overlooked paper by I. J. Schark (10). In it, among other things I. J. Schark proved

Cluster Value Theorem (I. J. Schark - 1961) Fix $f \in \mathcal{H}^{\infty}(\mathbb{D})$ and $c \in \overline{\mathbb{D}}$. Then the following sets are equal: $\{w \in \mathbb{C} \mid \exists (z_n) \subset \mathbb{D}, z_n \to c \text{ and } f(z_n) \to w\};$ $\{\varphi(f) \mid \varphi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) \mid \Pi(\varphi) = c\}.$

Carleson's theorem (312) appeared one year after a somewhat overlooked paper by I. J. Schark (10). In it, among other things I. J. Schark proved

Cluster Value Theorem (I. J. Schark - 1961) Fix $f \in \mathcal{H}^{\infty}(\mathbb{D})$ and $c \in \overline{\mathbb{D}}$. Then the following sets are equal:

$$\{w \in \mathbb{C} \mid \exists (z_n) \subset \mathbb{D}, z_n \to c \text{ and } f(z_n) \to w\}; \\ \{\varphi(f) \mid \varphi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) \mid \Pi(\varphi) = c\}.$$

Remarks 0. Schark's result is trivial if |c| < 1.

1. Carleson's theorem \Rightarrow I. J. Schark's theorem, but \notin is false.

Carleson's theorem (312) appeared one year after a somewhat overlooked paper by I. J. Schark (10). In it, among other things I. J. Schark proved

Cluster Value Theorem (I. J. Schark - 1961) Fix $f \in \mathcal{H}^{\infty}(\mathbb{D})$ and $c \in \overline{\mathbb{D}}$. Then the following sets are equal: $\{w \in \mathbb{C} \mid \exists (z_n) \subset \mathbb{D}, z_n \to c \text{ and } f(z_n) \to w\};$

$$\{ arphi(f) \mid arphi \in \mathcal{M}(\mathcal{H}^{\infty}(\mathbb{D})) \mid \Pi(arphi) = c \}.$$

Remarks 0. Schark's result is trivial if |c| < 1.

- 1. Carleson's theorem \Rightarrow I. J. Schark's theorem, but \notin is false.
- 2. The analogous result to Carleson's theorem for higher dimensions, e.g. \mathbb{C}^2 with the Euclidean or max norms, is unknown. Put briefly, for dim X=1, there are no known counterexamples; for dim $X\geq 2$, there are no known positive results. On the other hand,
- 3. There is no known situation in which I. J. Schark's theorem is false.

First, we're interested in a cluster value theorem, à la I. J. Schark. To start, for a given complex Banach space X, observe that $\delta(B_X) \equiv \{\delta_c \mid c \in B_X\} \subset \mathcal{M}(\mathcal{H}^\infty(B_X))$. Also, as before, endow $\mathcal{M}(\mathcal{H}^\infty(B_X))$ with the weak-star topology, considering it as a subspace of $(\mathcal{H}^\infty(B_X)^*$, weak-star).

First, we're interested in a cluster value theorem, à la I. J. Schark. To start, for a given complex Banach space X, observe that $\delta(B_X) \equiv \{\delta_c \mid c \in B_X\} \subset \mathcal{M}(\mathcal{H}^\infty(B_X))$. Also, as before, endow $\mathcal{M}(\mathcal{H}^\infty(B_X))$ with the weak-star topology, considering it as a subspace of $(\mathcal{H}^\infty(B_X)^*$, weak-star).

Harder Problem: Is the Cluster Value Theorem still true? Namely, for a fixed $f \in \mathcal{H}^{\infty}(B_X)$ and a fixed point $z^{**} \in \overline{B}_{X^{**}}$, are the following two sets equal?

$$\{w \in \mathbb{C} \mid \exists \text{ net } (z_{\alpha})_{\alpha} \in B_X, \ z_{\alpha} \to z^{**} \text{ weak } -* \& f(z_{\alpha}) \to w\};$$

$$\{\varphi(f)\mid \varphi\in\mathcal{M}(\mathcal{H}^{\infty}(B_X)),\ \Pi(\varphi)=z^{**}\}.$$

Remark Unlike the case dim $X < \infty$, the fiber over any, even an interior point of $B_{X^{**}}$ is rich. In particular, $\beta \mathbb{N} \subset \Pi^{-1}(0)$. Even in this case, the easier (?) problem is open in general:

Remark Unlike the case dim $X < \infty$, the fiber over any, even an interior point of $B_{X^{**}}$ is rich. In particular, $\beta \mathbb{N} \subset \Pi^{-1}(0)$. Even in this case, the easier (?) problem is open in general: Easier Problem: For a fixed $f \in \mathcal{H}^{\infty}(B_X)$, are the following two sets equal?

Remark Unlike the case dim $X < \infty$, the fiber over any, even an interior point of $B_{X^{**}}$ is rich. In particular, $\beta \mathbb{N} \subset \Pi^{-1}(0)$. Even in this case, the easier (?) problem is open in general: Easier Problem: For a fixed $f \in \mathcal{H}^{\infty}(B_X)$, are the following two sets equal?

$$\begin{split} &\{w\in\mathbb{C}\mid\exists\ \mathrm{net}\ (z_{\alpha})_{\alpha}\in B_{X},\ z_{\alpha}\rightarrow0\ \mathrm{weakly}\ \&\ f(z_{\alpha})\rightarrow w\};\\ &\{\varphi(f)\mid\varphi\in\mathcal{M}(\mathcal{H}^{\infty}(B_{X})),\ \Pi(\varphi)=0\}. \end{split}$$

Yes, even to the "harder" question, if $X = c_0$.

Yes, even to the "harder" question, if $X = c_0$.

Theorem. Fix $f \in \mathcal{H}^{\infty}(B_{c_0})$ and $z^{**} \in \overline{B}_{\ell_{\infty}}$. Then the two sets

$$\{w \in \mathbb{C} \mid \exists \text{ net } (z_{\alpha})_{\alpha} \in B_{c_0}, \ z_{\alpha} \to z^{**} \ \textit{weak} - * \& \ \textit{f}(z_{\alpha}) \to w\}$$

and

$$\{\varphi(f) \mid \varphi \in \mathcal{M}(\mathcal{H}^{\infty}(B_{c_0})), \ \Pi(\varphi) = z^{**}\}$$

are equal.

It is unknown if a similar result holds for the apparently simpler case of $X=\ell_2.$

It is unknown if a similar result holds for the apparently simpler case of $X=\ell_2$.

One basic idea for proof of harder problem, $X = c_0$. Notation: For $g \in \mathcal{H}^{\infty}(B_{c_0})$ and $n \in \mathbb{N}$, define $g_n \in \mathcal{H}^{\infty}(B_{c_0})$ by $g_n(x_1,...,x_n,x_{n+1},...) \equiv g(0,...,0,x_{n+1},...)$.

Lemma

Fix
$$\varphi \in \mathcal{M}(\mathcal{H}(^{\infty}(B_{c_0})))$$
 so that $\Pi(\varphi) = 0$. For any $g \in \mathcal{H}^{\infty}(B_{c_0})$ and any $n \in \mathbb{N}$, $\varphi(g) = \varphi(g_n)$.

It is unknown if a similar result holds for the apparently simpler case of $X=\ell_2$.

One basic idea for proof of harder problem, $X = c_0$. Notation: For $g \in \mathcal{H}^{\infty}(B_{c_0})$ and $n \in \mathbb{N}$, define $g_n \in \mathcal{H}^{\infty}(B_{c_0})$ by $g_n(x_1,...,x_n,x_{n+1},...) \equiv g(0,...,0,x_{n+1},...)$.

Lemma

Fix $\varphi \in \mathcal{M}(\mathcal{H}(^{\infty}(B_{c_0})))$ so that $\Pi(\varphi) = 0$. For any $g \in \mathcal{H}^{\infty}(B_{c_0})$ and any $n \in \mathbb{N}, \ \varphi(g) = \varphi(g_n)$.

Remark The lemma is false if c_0 is replaced by ℓ_2 (and so we're stuck).

Fibers Recall: For a complex Banach space X, $\Pi: \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \to \overline{B}_X^{**}, \ \Pi(\varphi) \equiv \varphi|_{X^*}.$

Fibers Recall: For a complex Banach space X, $\Pi: \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \to \overline{B}_X^{**}, \ \Pi(\varphi) \equiv \varphi|_{X^*}.$

Fix X and two points z^{**} and w^{**} in $\overline{B}_{X^{**}}$.

Fibers Recall: For a complex Banach space X, $\Pi: \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \to \overline{B}_X^{**}, \ \Pi(\varphi) \equiv \varphi|_{X^*}.$

Fix X and two points z^{**} and w^{**} in $\overline{B}_{X^{**}}$. Problem What is the relation between the two fibers $\Pi^{-1}(z^{**})$ and $\Pi^{-1}(w^{**})$?

Fibers Recall: For a complex Banach space X, $\Pi: \mathcal{M}(\mathcal{H}^{\infty}(B_X)) \to \overline{B}_X^{**}, \ \Pi(\varphi) \equiv \varphi|_{X^*}.$

Fix X and two points z^{**} and w^{**} in $\overline{B}_{X^{**}}$. Problem What is the relation between the two fibers $\Pi^{-1}(z^{**})$ and $\Pi^{-1}(w^{**})$?

Suppose $X = \ell_2$. If ||z|| = ||w|| = 1, then $\Pi^{-1}(z) \subseteq \Pi^{-1}(w)$. The same result holds if ||z|| and ||w|| are both < 1. What if 1 = ||z|| > ||w||?

Suppose $X=c_0$. Then $\|z\|,\|w\|<1\Rightarrow\Pi^{-1}(z)\simeq\Pi^{-1}(w)$. But for $\|z\|=\|w\|=1$, the situation is murky.

Suppose $X = c_0$. Then $||z||, ||w|| < 1 \Rightarrow \Pi^{-1}(z) \subseteq \Pi^{-1}(w)$. But for ||z|| = ||w|| = 1, the situation is murky.

For the special cases $\mathcal{H}^{\infty}(D)$ and $\mathcal{H}^{\infty}(D^2)$, what is known is that $\Pi^{-1}(1) \subseteq \Pi^{-1}(a,b)$, if one of |a|,|b|=1 and the other is <1.

Suppose $X=c_0$. Then $\|z\|, \|w\|<1 \Rightarrow \Pi^{-1}(z) \subseteq \Pi^{-1}(w)$. But for $\|z\|=\|w\|=1$, the situation is murky. For the special cases $\mathcal{H}^{\infty}(D)$ and $\mathcal{H}^{\infty}(D^2)$, what is known is that $\Pi^{-1}(1) \subseteq \Pi^{-1}(a,b)$, if one of |a|, |b|=1 and the other is <1. Also, $\Pi^{-1}(1)$ and $\Pi^{-1}(1,1)$ are not homeomorphic. (But the argument really uses dimension 1.)

Suppose $X = c_0$. Then $||z||, ||w|| < 1 \Rightarrow \Pi^{-1}(z) \subseteq \Pi^{-1}(w)$. But for ||z|| = ||w|| = 1, the situation is murky.

For the special cases $\mathcal{H}^{\infty}(D)$ and $\mathcal{H}^{\infty}(D^2)$, what is known is that $\Pi^{-1}(1) \subseteq \Pi^{-1}(a,b)$, if one of |a|,|b|=1 and the other is <1. Also, $\Pi^{-1}(1)$ and $\Pi^{-1}(1,1)$ are not homeomorphic. (But the argument really uses dimension 1.)

Remark Even if dim $X < \infty$ (so $B_X = B_{X^{**}}$) and even if $\|z\|, \|w\| < 1$, the problem, of whether $\pi^{-1}(z)$ and $\pi^{-1}(w)$ are (somehow) the "same" is apparently unknown in general.

The problem is that, in general, it isn't known if $\Pi^{-1}(z) = \{\delta_z\}$ if $\dim X < \infty$ and $\|z\| < 1$.