"A new approach to the L^p -theory of $-\Delta + b \cdot \nabla$, and its applications to Feller processes with general drifts"

Damir Kinzebulatov (McGill University)

The problem of constructing a Feller process (a diffusion) having infinitesimal generator $-\Delta + b \cdot \nabla$, $b : \mathbb{R}^d \to \mathbb{R}^d$, $d \ge 3$ ("a *d*-Brownian motion perturbed by drift *b*"), has been thoroughly studied in the literature, motivated by applications, as well as the search for the maximal general class of drifts *b* ensuring existence of the process. With a sub-critical case $b \in L^p + L^\infty$, p > d, settled long time ago, this search culminated in the following two distinct classes of *critical* drifts:

– the class of form-bounded vector fields \mathbf{F}_{δ} , i.e.

 $\|b(\lambda - \Delta)^{-\frac{1}{2}}\|_{2 \to 2} \leqslant \sqrt{\delta}$ for some $\lambda = \lambda_{\delta} > 0$,

– the Kato class $\mathbf{K}_{\delta}^{d+1}$, i.e.

 $||b(\lambda - \Delta)^{-\frac{1}{2}}||_{1 \to 1} \leq \delta$ for some $\lambda = \lambda_{\delta} > 0$.

The vector fields in \mathbf{F}_{δ} and $\mathbf{K}_{\delta}^{d+1}$ have critical (i.e. sensitive to multiplication by a constant) singularities, at isolated points or along hypersurfaces, resp. (e.g. $\sqrt{\delta x}|x|^{-2}$ or $(|x|-1)^{-\beta}$, $\beta < 1$).

Earlier, $\mathbf{K}_{\delta}^{d+1}$ has been recognized as the class responsible for existence of the Gaussian bounds on the fundamental solution of $-\Delta + b \cdot \nabla$ (Yu. Semenov, Qi. Zhang, also M. Aizenman, B. Simon and others) (\Rightarrow an associated Feller process). \mathbf{F}_{δ} ensures that that $-\Delta + b \cdot \nabla$ is dissipative in L^p , $p > \frac{2}{2-\sqrt{\delta}}$ (\Rightarrow a Feller process via a Moser-type iterative procedure of Kovalenko-Yu. Semenov).

What class of drifts b is responsible for existence of a Feller process associated with $-\Delta + b \cdot \nabla$? It turns out that ultimately neither Gaussian bounds nor dissipativity in L^p is related to existence of the process: the process exists for b in the class of weakly form-bounded vector fields $\mathbf{F}_{\delta}^{\frac{1}{2}}$, i.e.

 $||b|^{\frac{1}{2}}(\lambda - \Delta)^{-\frac{1}{4}}||_{2 \to 2} \leqslant \sqrt{\delta} \quad \text{ for some } \lambda = \lambda_{\delta} > 0.$

 $\mathbf{K}_{\delta}^{d+1}\subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}},\, \mathbf{F}_{\delta^{2}}\subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}},\, \text{and} \,$

$$b \in \mathbf{F}_{\delta_1} \text{ and } \mathbf{f} \in \mathbf{K}_{\delta_2}^{d+1} \implies b + \mathbf{f} \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \ \sqrt{\delta} = \sqrt[4]{\delta_1} + \sqrt{\delta_2},$$

i.e. for the first time b can combine different kinds of singularities, e.g. $|x|^{-1}$ and $(|x|-1)^{-\beta}$, $\beta < 1$.

The construction of the process is a consequence of the $L^p(\mathbb{R}^d)$ -regularity theory of $-\Delta + b \cdot \nabla$, p > d - 1, L^p -inequalities between operator $(\lambda - \Delta)^{\frac{1}{2}}$ and "potential" |b|, and "the method of constructing the resolvent".

We strengthen, in particular, the recent results of R. Bass-Z.Q. Chen [Ann. Prob., 2003] and P. Kim-R. Song [Stoc. Proc. Appl., 2014] (for $-\Delta^{\frac{\alpha}{2}} + b \cdot \nabla$) for the Kato class of measure-valued drifts.

http://arxiv.org/abs/1502.07286